Shopping Basket 0
Human Kinetics Publishers, Inc.

HUMAN KINETICS

Excerpts

Examples of muscular strength tests for the upper extremity

This is an excerpt from Effective Functional Progressions in Sport Rehabilitation by Todd S. Ellenbecker, DPT, Mark DeCarlo, MS, MHA, and Carl DeRosa, PhD.

Objective assessment of muscular strength in the upper extremity is indicated to determine the presence of muscular strength deficiencies as well as to monitor progress during exercise progression. Although not always feasible, the use of a handheld dynamometer or isokinetic dynamometer is recommended to provide the highest degree of accuracy and represent muscular strength relationships (e.g., bilateral comparisons and unilateral strength ratios). Specific test positions have been described by Daniels and Worthingham (1980) and Kelly, Kadrmas, and Speer (1996) for testing the rotator cuff and scapular musculature. Of key importance is the close monitoring of external and internal rotation strength in the neutral position as well as in 90° of glenohumeral joint abduction. These can be tested bilaterally and compared. Close monitoring of the medial scapular border is also necessary, specifically during external rotation testing. If the evaluator notes significant movement of the medial border of the scapula away from the thorax during testing of external rotation with the arm in neutral abduction or adduction at the side, this constitutes a “flip sign.” This indicates a lack of scapular stabilization and points the evaluator to include scapular stabilization exercise progressions in the person’s exercise programming.

Additionally, the empty can test has been used to test for supraspinatus strength and can also be used as a provocation test to evaluate rotator cuff pathology (Itoi et al. 1999). Although all muscles of the upper extremity can be tested manually, the rotator cuff and scapular muscles are perhaps of greatest importance during functional screening. Distal strength testing using a hand-grip dynamometer should reveal significantly greater dominant-arm strength in baseball pitchers and tennis players (Ellenbecker and Mattalino 1997b).

Isokinetic testing performed at 90° of glenohumeral joint abduction is recommended for screening overhead athletes. This joint position more-specifically addresses muscular function required for overhead activities (Bassett, Browne, and Morrey 1994). Descriptive data profiles for throwing athletes (Wilk et al. 1993; Ellenbecker and Mattalino 1997b) as well as for elite junior tennis players (Ellenbecker and Roetert 2003) are listed in tables 3.1 through 3.5. These data provide objective information regarding the normal torque-to-body-weight ratios as well as external rotation and internal rotation (ER/IR) ratios used in the interpretation of instrumented upper extremity strength testing.


Table 3.1 Isokinetic Peak Torque-to-Body-Weight and Work-to-Body-Weight Ratios for 147 Professional Baseball Pitchers

  INTERNAL ROTATION EXTERNAL ROTATION
Speed Dominant Arm Nondominant Arm Dominant Arm Nondominant Arm
210º/sec        
Torque 21% 19% 13% 14%
Work 41% 38% 25% 25%
300º/sec        
Torque 20% 18% 13% 13%
Work 37% 33% 23% 23%

Data were obtained on a Cybex 350 concentric isokinetic dynamometer.
Data from T.S. Ellenbecker and A.J. Mattalino, 1997, “Concentric isokinetic shoulder internal and external rotation strength in professional baseball pitchers,” Journal of Orthopaedic Sports Physical Therapy 25: 323-328.

 

Table 3.2 Isokinetic Peak Torque-to-Body-Weight Ratios for 150 Professional Baseball Pitchers

  INTERNAL ROTATION EXTERNAL ROTATION
Speed Dominant Arm Nondominant Arm Dominant Arm Nondominant Arm
180º/sec 27% 17% 18% 19%
300º/sec 25% 24% 15% 15%

Data were obtained on a Biodex isokinetic dynamometer.
Data from K.E. Wilk et al., 1993, “The strength characteristics of internal and external rotator muscles in professional baseball pitchers,” American Journal of Sports Medicine 21: 61-66.

 

Table 3.3 Isokinetic Peak Torque-to-Body-Weight Ratios and Single Repetition Work-to-Body-Weight-Ratios in Elite Junior Tennis Players

 
  DOMINANT ARM NONDOMINANT ARM
  Peak Torque (%) Work (%) Peak Torque (%) Work (%)
External rotation (ER)      
Male, 210º/sec 12 20 11 19
Male, 300º/sec 10 18 10 17
Female, 210º/sec 8 14 8 15
Female, 300º/sec 8 11 7 12
 
Internal rotation (IR)      
Male, 210º/sec 17 32 14 27
Male, 300º/sec 15 28 13 23
Female, 210º/sec 12 23 11 19
Female, 300º/sec 11 15 10 13

A Cybex 6000 series isokinetic dynamometer and 90° of glenohumeral joint abduction were used. Data are expressed in foot-pounds per unit of body weight for ER and IR.
Data from T.S. Ellenbecker and E.P Roetert, 2003, “Age specific isokinetic glenohumeral internal and external rotation strength in elite junior tennis players,” Journal of Science and Medicine in Sport 6(1): 63-70.

 

Table 3.4 Unilateral External Rotation and Internal Rotation Ratios in Professional Baseball Pitchers

 
  Dominant Arm Nondominant Arm
210º/seca    
Torque 64 74
Work 61 66
300º/seca    
Torque 65 72
Work 62 70
180º/secb    
Torque 65 64
300º/secb    
Torque 61 70

aData from, T.S. Ellenbecker and A.J. Mattalino, 1997, “Concentric isokinetic shoulder internal and external rotation strength in professional baseball pitchers,” Journal of Orthopaedic Sports Physical Therapy 25: 323-328. bData from W.E. Wilk et al., 1993, “The strength characteristics of internal and external rotator muscles in professional baseball pitchers,” American Journal of Sports Medicine 21: 61-66.

 

Table 3.5 Isokinetic External Rotation/Internal Rotation Ratios in Elite Junior Tennis Players

 
  DOMINANT ARM NONDOMINANT ARM
ER/IR ratio Peak torque (%) Work (%) Peak torque (%) Work (%)
Male, 210º/sec 69 64 81 81
Male, 300º/sec 69 65 82 83
Female, 210º/sec 69 63 81 82
Female, 300º/sec 67 61 81 77

A Cybex 6000 series isokinetic dynamometer and 90º of glenohumeral joint abduction were used. Data are expressed as ER/IR ratios representing the relative muscular balance between the external and internal rotators.
Data from T.S. Ellenbecker and E.P. Roetert, 2003, “Age specific isokinetic glenohumeral internal and external rotation strength in elite junior tennis players,” Journal of Science and Medicine in Sport 6(1): 63-70.

Muscular imbalances caused by repetitive and forceful internal rotation during the acceleration of the throwing motion, tennis serve, and forehand can lead to unilateral muscular imbalances on the dominant arm between the external and internal rotators and jeopardize optimal muscular stabilization. Careful monitoring of the external and internal rotation unilateral strength ratio is an integral measure of musculoskeletal testing programs for return to sport as well as injury prevention and assists in the determination of optimal application of exercise programs for the overhead athlete.


Learn more about Effective Functional Progressions in Sport Rehabilitation.

 

 

Facebook Reddit LinkedIn Twitter

The above excerpt is from:

Effective Functional Progressions in Sport Rehabilitation

Effective Functional Progressions in Sport Rehabilitation

$56.00
View other formats
 

More excerpts from this book

 
Effective Functional Progressions in Sport Rehabilitation

Related Excerpts

Get the latest news, special offers, and updates on authors and products. SIGN UP NOW!

Human Kinetics Rewards

About Our Products

Book Excerpts

Catalogs

News and Articles

About Us

Career Opportunities

Events

Business to Business

Author Center

HK Today Newsletter

Services

Exam/Desk Copies

Language rights translation

Association Management

Associate Program

Rights and Permissions

Partnerships

Partners

Programs

Certifying Organizations

Connect with Us

YouTube Tumblr Pinterest

Terms & Conditions

/

Privacy Policy

/

Safe Harbor