
Peter R.E. Crocker Rikk B. Alderman and F. Murray R. Smith
Lakehead University University of Alberta

Cognitive-Affective Stress Management Training (SMT) is a coping skills training program designed to help athletes control dysfunctional stress processes (Smith, 1980). The present quasi-experimental study investigated the effects of SMT on affect, cognition, and performance in high performance youth volleyball players. Members of Alberta’s Canada Games men’s and women’s (under 19 years of age) volleyball teams were assigned to either an experimental treatment group or a waiting-list control group. The treatment program consisted of eight modules, approximately 1 week apart, that allowed subjects to learn and apply somatic and cognitive coping skills. The results indicated that the treatment group emitted fewer negative thoughts in response to videotaped stressors and had superior service reception performance in a controlled practice compared to the control group. There were no interpretable differences between groups for either state anxiety (CSAI-2) or trait anxiety (SCAT). The cognitive and performance measures provided converging support for Smith’s program. The results are discussed in terms of coping skills training, theoretical issues regarding the measurement of anxiety, and possible affect-cognition system independence.

The last decade has witnessed a resurgence in exploring and discovering the role of emotion in physical activity (Crocker & Gordon, 1986; Harter, 1981; Vallerand, 1983, 1987). In sport, emotion is often implicitly or explicitly associated with the term stress (Long, 1980, Scanlan, 1984). Transactional models of stress (e.g., Lazarus & Launier, 1978 posit that stress relationships occur as a result of a transaction between environment and person factors. Two person factors that are extremely important in the transactional model are cognitive appraisal and coping resources (Lazarus & Folkman, 1984). Studies with physical activity populations strongly suggest that the participant’s appraisal processes have important affective and behavioral consequences (Vallerand, 1987; Weiss, 1986).

Requests for reprints should be sent to Peter R.E. Crocker, School of Physical Education, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E9.
Coping has been recognized as a critical mediating factor that aids in buffering or moderating stress relationships (Long, 1980; Smith, 1980). Coping may be defined as, "constantly changing cognitive and behavioral effects to manage specific external and/or internal demands that are appraised as taxing or exceeding the resources of the person" (Lazarus & Folkman, 1984, p. 141). Typologies of coping have suggested that coping strategies may be categorized on the basis of cognitive and behavioral efforts used to change a stressful situation (problem-focused) and coping efforts used to regulate emotional arousal (emotion-focused) (Lazarus & Folkman, 1984). There is a growing consensus that there is not a one-to-one relationship between coping category or strategy and effective managing of stress relationships (Meichenbaum, 1985).

The transactional model of stress implicitly recognizes the intervention approach advocated by the coping skills training model (Smith, 1984). As Meichenbaum (1985) suggested, many stress problems occur because the individual does not have, or has but does not use, the necessary coping skills to manage the stress process. Coping skills training programs that help individuals acquire, develop, practice, and apply appropriate coping skills have been advocated to help reduce or eliminate stress problems (Meichenbaum, 1985; Smith, 1986). Two coping skills programs that have been adapted to or developed for use in the sport setting are Stress Inoculation Training (Meichenbaum, 1977, 1985) and Cognitive-Affective Stress Management Training (Smith, 1980; Smith & Ascough, 1985).

Cognitive-Affective Stress Management Training, or SMT, is a coping skills program designed to teach the athlete a specific "integrated coping response" having both relaxation and cognitive components that can be used to control emotional arousal (Smith, 1980; Smith & Smoll, 1982). It is conceptually similar to stress inoculation training in that it is a cognitive-behavioral program consisting of three overlapping stages: conceptualization, skill acquisition and rehearsal, and skill application. A major procedural feature in the skill rehearsal phase of SMT is induced affect (Sipprelle, 1967), which involves having the athlete imagine distressing situations and generating high levels of emotional arousal. The athlete then uses the acquired coping skills to "turn off" the emotional arousal.

The experimental support of SMT is not extensive. It has been found to reduce some components of the stress process and/or improve performance in physical activity groups such as football players (Smith & Smoll, 1978), figure skaters (Smith, 1980), and cross-country runners (Ziegler, Klinzing, & Williamson, 1982). With the exception of Ziegler et al. (1982), most of the evidence supporting SMT consists of case studies or group studies that lack control conditions. However, Ziegler and her colleagues only reported how a physiological indicator of performance was affected by the SMT program. The general lack of controlled studies, or evidence of adaptive changes in psychological indicators of stress processes, makes it difficult to evaluate the efficacy of SMT.

The purpose of this study was to investigate the effectiveness of SMT in reducing the adverse effects of competitive stress at the senior youth high performance level in a quasi-experimental study. The effect constructs (Cook & Campbell, 1979) selected were based on the transactional model which proposes that affective, cognitive, and behavioral domains are interrelated (Lazarus & Folkman, 1984) and that treatment effects may occur in any or all domains (Meichenbaum, 1977). This study investigated changes in trait and state anxiety, thoughts
in relation to stressors, and performance. The hypotheses were that the treatment group, compared to the control group, would have (a) lower reported competitive trait and state anxiety, (b) more positive and fewer negative self-statements in response to volleyball stressors, and (c) higher performance on service reception in a controlled practice situation.

Method

Subjects

Thirty-one volleyball players, 16 men and 15 women, selected for the final training camp for the 1987 Alberta Canada Games Team (under 19) started in the study. The players ranged from 16 to 18 years of age. Those within each team were assigned on the basis of geographic location, within the constraints of a maximum of eight players per group, to one of two conditions: SMT treatment or waiting-list control. Since players came from different regions of the province, it was logistically impossible to randomly assign players and then conduct treatment sessions. Players from the north-central region made up the treatment group. Those from the southern region comprised the control group, which started with seven males and seven females. One male and one female were lost due to selection to the Junior National Team, and another control female was lost through injury. The final numbers for each group were, control–men = 6, control–women = 5, experimental–men = 8, experimental–women = 8.

Dependent Measures

Anxiety. State anxiety was measured by the Competitive State Anxiety Inventory–2, or CSAI–2 (Martens, Burton, Vealey, Bump, & Smith, 1983), which contains three subscales: cognitive anxiety (CSAI–cog), somatic anxiety (CSAI–som), and self-confidence (CSAI–sc). Martens et al. (1983) reported that internal consistency for the subscales ranged from $r = .79$ to $r = .90$. Trait anxiety was measured by the Sport Competition Anxiety Test, or SCAT (Martens, 1977). The SCAT has acceptable test–retest reliability ranging from $r = .72$ to $r = .88$ (Martens, 1977).

Thought Listing. Athlete’s thoughts in response to a consistent stressor was measured by a thought listing procedure described by Cacioppo and Petty (1981) and adapted by Long (1984). The procedure consisted of having the athletes list their thoughts for 2 minutes after viewing each of five videotaped volleyball situations. Two reactive situations used in the analysis were part of five videotaped scenes (three spurious + two reactive). Two spurious scenes preceded the first reactive scene. This allowed players to become familiar with the procedure. The first reactive scene involved a player serving the ball into the net during a tied game in a semifinal match in an important tournament. The second scene showed a player shanking the ball directly into the floor on game point (14-15) in the deciding game of the championship match. The three spurious scenes were changed in each assessment period.

Each player’s self-statements were submitted to two judges for scoring as positive thoughts, negative thoughts, and neutral/irrelevant thoughts. Positive thoughts are statements that are favorable or supportive of the person or situation, indicate preparatory self-talk, or suggest positive reappraisal of the situation. Negative thoughts are statements that are negative or unsupportive toward
the situation or self. These negative statements include self-condemning thoughts and negative attributions and actions. The last category of neutral thoughts are statements that neither favor nor oppose the situation or self, or that are irrelevant to the situation.

Each statement was scored as one of the preceding three categories. Data reduction involved summing the number of self-statements in each category. Scores for each judge were computed by calculating the proportion of positive, negative, and neutral/irrelevant thoughts to the number of total thoughts for each reactive scene.

Performance. Volleyball service reception performance was videotaped during a controlled practice situation. It was evaluated by the first author and an experienced volleyball coach not affiliated with the program and unaware of group assignment. Performance was assessed on a 5-point scale ranging from poor (1) to excellent (5), based on the following criteria used at the 1983 World University Games (Baudin, personal communication, April 1986):

1. Poor—Results directly in a point for the opposition (ball directly hits the floor or is shanked out of play);
2. Fair—Offensive play cannot be run and offense is limited to a high ball attack (may or may not be set by the setter);
3. Average—Setter is forced to play the ball from such a position that only one option of the attack is possible;
4. Good—Pass causes the setter to move a few feet but is still good enough to allow most options of the called offensive play;
5. Excellent—Pass is perfectly passed to the setter at the correct height and distance from the net that will allow the use of all options of the called offensive play.

Procedure

Before the treatment program began, a pretreatment data acquisition session involving all players was held. Players completed the SCAT and thought-listing measures, with CSAI–2 and service reception being the last measures collected. For assessing service reception, players were allowed to warm up for 15 minutes. Within 2 minutes of individual service reception, players completed the CSAI–2. For performance, a member of the coaching staff served 12 times to each player, who was located in position 5 on the volleyball court (position 5 was considered to be in the back left corner of the court, extending 4.5 m forward and 3 m to the right). The first two serves were considered practice. The player’s task was to pass the ball to the setter in the standard setting position (approximately 1 m from the net and 3.5 m from the right sideline). Any serve that was considered to be outside of position 5 was retaken.

The SMT program was structured into eight 1-hour modules administered weekly by the first author. The SMT group was trained according to the general guidelines proposed by Smith (1980) and by Smith and Ascough (1985). Some modifications and additional modules were added to reflect the specific environmental and cognitive demands of volleyball. The eight modules were (a) conceptualization and introduction to relaxation training, (b) role of cognitive mediation and identifying trigger thoughts, (c) role of irrational beliefs and developing substitution statements, (d) relaxation and induced affect, (e) self-instructional train-
ing, (f) self-talk and induced affect, (g) integrated coping response, and (h) meditation. Players were given homework assignments after each session that involved practicing the skills covered in the session. These assignments were reviewed at the beginning of the next session.

The conceptualization session involved an introduction to the transactional model of stress in which cognitive appraisal and coping processes were highlighted. The players were later instructed how to use progressive muscle relaxation (Smith, 1980), which was continued for the duration of the treatment program. The second module highlighted the role of cognitive evaluation in stress and emphasized identifying thoughts or feelings that trigger the stress process. The third module introduced Ellis's (1977) notion on how irrational beliefs can contribute to the stress process. The fourth module introduced the induced affect procedure suggested by Smith and Ascough (1985). When high levels of emotional arousal were attained, the players were instructed to “turn it off” using the relaxation response. The fifth module consisted of learning general, personally relevant, self-statements to control the stress cycle. Players were shown how correcting or controlling self-talk could help buffer or eliminate stress. The importance of self-talk before serving or waiting for service reception was modeled by a former Canadian National volleyball team member.

The sixth module involved using self-talk in the induced affect procedure. Using the same general procedure as module four, players used self-statements to “turn off” the emotional arousal. The seventh module introduced the integrated coping response, which involves using self-statements during the inspiration cycle and relaxation response during the expiration cycle of breathing. The players practiced this response under the induced affect condition. Players were further instructed to attempt to use the coping skills in practice games and competitive games. The last module involved learning Benson’s (1976) meditation technique.

Approximately 1 week following the last treatment session, a posttreatment assessment session involving all players was held. This session occurred during the intense summer volleyball training period, about 2 weeks before a major national volleyball tournament.

Results

Data for each dependent measure was first analyzed by a two-way ANCOVA (treatment and gender) with pretreatment data serving as the covariate. Two dependent measures, positive thoughts to scene one and service reception performance, violated at least one of the critical assumptions for ANCOVA. These two measures were analyzed by a $2 \times 2 \times 2$ (Treatment \times Gender \times Time) analysis of variance with repeated measures on the last factor. The mean and standard deviations of all dependent measures at pretreatment and posttreatment are shown in Table 1.

SCAT and CSAI-2

Analysis of covariance for SCAT did not reveal any significant main or interaction effects. These findings do not provide support for the hypothesis that treatment subjects should have lower competitive trait anxiety compared to controls. However, given the relatively short intervention period (8 weeks), a treatment effect may not be evident in a trait measure such as SCAT. A follow-up assessment may reveal more information.
Table 1

Cell Means and Standard Deviations for Anxiety, Performance, and Thought-Listing Measures for Male and Female Experimental (SMT) and Control (CON) Subjects at Pretreatment and Posttreatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Time</th>
<th>SCAT M</th>
<th>SD</th>
<th>CSAI-cog M</th>
<th>SD</th>
<th>CSAI-som M</th>
<th>SD</th>
<th>CSAI-sc M</th>
<th>SD</th>
<th>Perf M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMT-M</td>
<td>Pre</td>
<td>17.4</td>
<td>3.7</td>
<td>13.1</td>
<td>3.1</td>
<td>12.4</td>
<td>3.0</td>
<td>29.4</td>
<td>4.4</td>
<td>25.5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>16.6</td>
<td>2.7</td>
<td>13.8</td>
<td>2.1</td>
<td>12.1</td>
<td>2.4</td>
<td>29.8</td>
<td>6.2</td>
<td>36.3</td>
<td>5.5</td>
</tr>
<tr>
<td>SMT-F</td>
<td>Pre</td>
<td>18.2</td>
<td>4.1</td>
<td>20.0</td>
<td>7.1</td>
<td>18.3</td>
<td>7.0</td>
<td>23.8</td>
<td>5.0</td>
<td>27.3</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>18.3</td>
<td>4.4</td>
<td>17.9</td>
<td>5.6</td>
<td>15.0</td>
<td>5.5</td>
<td>25.2</td>
<td>5.5</td>
<td>39.0</td>
<td>2.4</td>
</tr>
<tr>
<td>CON-M</td>
<td>Pre</td>
<td>15.6</td>
<td>5.0</td>
<td>14.5</td>
<td>4.1</td>
<td>12.5</td>
<td>4.3</td>
<td>28.7</td>
<td>4.9</td>
<td>26.5</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>17.3</td>
<td>4.9</td>
<td>13.7</td>
<td>4.5</td>
<td>12.8</td>
<td>4.2</td>
<td>29.2</td>
<td>5.5</td>
<td>28.2</td>
<td>7.0</td>
</tr>
<tr>
<td>CON-F</td>
<td>Pre</td>
<td>15.4</td>
<td>5.6</td>
<td>15.2</td>
<td>6.9</td>
<td>14.0</td>
<td>6.2</td>
<td>28.0</td>
<td>5.4</td>
<td>31.0</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>15.0</td>
<td>4.8</td>
<td>14.2</td>
<td>5.8</td>
<td>13.6</td>
<td>7.4</td>
<td>31.8</td>
<td>4.0</td>
<td>31.0</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Perf = performance; PT1 = positive thoughts to scene 1, PT2 = positive thoughts to scene 2, NT1 = negative thoughts to scene 1, NT2 = negative thoughts to scene 2, M = mean, SD = standard deviation.

There were no significant main effects or interactions for the CSAI-2 measures (F<1). These findings do not support the hypothesis that treatment subjects should manifest lower cognitive and somatic anxiety under evaluative conditions compared to controls. The observed anxiety scores for both trait and state anxiety measures are several points lower than scores reported for athletes of a similar age by Martens (1977) and Martens et al. (1983) (see Table 1). This suggests that (a) the volleyball players had relatively low trait anxiety and (b) the precompetitive period before service reception was not very stressful. A problem with the second conclusion is related to the construct validity of the CSAI-2. Many players reported that they did not feel particularly anxious before passing the ball, but as soon as they stepped on the court and the camera was turned on, their anxiety levels increased. This difficulty in obtaining a valid measure of competitive anxiety continues to be a problem in sport psychology.
Relationships Between Affective Measures

Because of the strong linear relationship between trait and state anxiety reported in the literature (Martens, 1977; Martens et al., 1983), correlation coefficients were computed. As expected, SCAT was positively related to CSAI-cog and CSAI-som ($r = .64$ and $r = .67$, respectively, at pretreatment; $r = .55$ and $r = .68$, respectively, at posttreatment) and negatively related to CSAI-sc ($r = -.5$ and $r = -.42$ at pretreatment and posttreatment, respectively). These scores are higher than, but consistent with, those reported by Martens et al. (1983).

The three subscales of the CSAI–2 are theorized to be conceptually independent, although Martens et al. (1983) admitted they are interrelated in some situations. These relationships are evident in the significant correlations among CSAI–2 subscales. The coefficients between CSAI–cog and CSAI–som ranged from $r = .72$ to $r = .48$ (pretreatment and posttreatment, respectively), indicating a strong interrelationship between the two anxiety measures. Both CSAI–cog and CSAI–som were negatively related to CSAI-sc ($r = -.82$ and $r = .72$, respectively, at pretreatment; $r = -.61$ and $r = -.33$, respectively, at posttreatment).

Thought Listing

For calculating interjudge reliability for thought listing, data from eight players were randomly selected for each assessment period. These data were coded by two judges, the first author and an experienced volleyball coach who was naive to group selection. Interjudge reliability was calculated using weighted Kappa (Cohen, 1968). Weighted Kappa were $+.93$ at pretreatment and $+.90$ at posttreatment. The first author’s scores for all players’ thoughts were used in the analysis.

For Scene 1, the ANCOVA for positive thoughts revealed no significant main or interaction effects, although the data were in the predicted direction. A separate ANCOVA for negative thoughts revealed that the main effect for treatment approached statistical significance, $F(1, 22) = 4.04, p < .06$. The gender effect was significant, $F(1, 22) = 5.44, p < .03$. The treatment-by-gender interaction failed to reach significance, $F(1, 22) = 2.52, p = .12$. Adjusted group means collapsed across treatments were 31.4% for treatment and 46.2% for controls (see Figure 1). The adjusted means collapsed across gender were 30.5% and 47.5% for females and males, respectively. The reason for the gender effect is not clear, although the models in the scenes were male, which may have led to a greater identification by the male players.

For Scene 2, a repeated measures ANOVA on positive thoughts failed to find a significant treatment-by-times interaction, which is the critical analysis to indicate a differential treatment effect over time. The ANCOVA on negative thoughts revealed a significant treatment effect, $F(1, 22) = 6.97, p < .02$. The gender effect and the treatment-by-gender interaction failed to reach significance. Adjusted means clearly indicate that treatment subjects had fewer negative thoughts in response to the videotaped stressor compared to the controls (see Figure 2). Adjusted means collapsed across gender were 77.6% for controls and 55.3% for the treatment group.

The thought listing data provided moderate support for the hypothesis that players in the SMT treatment condition would have fewer negative thoughts compared to the controls. The positive thoughts were also in the predicted direction.
Figure 1 — Adjusted cell means of percentage of negative thoughts to Scene 1 for male and female subjects in control and experimental groups at posttreatment.

Figure 2 — Adjusted cell means of percentage of negative thoughts to Scene 2 for male and female subjects in control and experimental groups at posttreatment.
Overall, the cognitive data provide evidence that the acquired coping skills allowed players to moderate the potentially distressing thoughts often involved in the stress process.

Performance

The performance data were coded by the first author and an experienced volleyball coach who was naive about group selection. For service reception, interjudge reliability was calculated using product-moment correlations based on the paired scores provided by the two judges for each trial observed (Hartmann, 1977). Correlations for each of the 10 trials ranged from $r = .93$ to $r = 1.0$ at pretreatment to $r = .91$ to $r = .99$ at posttreatment. There were negligible differences between judges' trial means and standard deviations. Because of the high agreement, the first author's coding scores were used in the data analysis (see Figure 3).

An ANOVA with repeated measures revealed a significant treatment-by-times interaction, $F(1, 22) = 17.36$, $p < .001$. Other interactions were not significant. Collapsing across gender conditions, the group means at pretreatment were 26.5 and 28.8 for treatment and control groups, respectively. At posttreatment, however, the treatment group improved 10 points to 36.3 while the controls improved marginally to 30.8. A post hoc analysis using the Scheffé method indicated a significant difference between the pretreatment and posttreatment scores for

Figure 3 — Service reception scores at pretreatment and posttreatment for male and female subjects in control and experimental groups.
the treatment group, $F(1, 15)=67.6, p<.001$. There was no difference between pretreatment and posttreatment scores for the control group. A between-groups analysis, using a pooled group mean square error (Kirk, 1982), indicated there was no difference between groups at pretreatment but there was a significant difference at posttreatment, $F=8.18, p<.01$. These results provided strong evidence that the SMT intervention improved service reception performance compared to the control group, which was exposed to the standard volleyball training program.

Discussion

This controlled quasi-experimental exploratory study (Cook & Campbell, 1977) investigated the effectiveness of Cognitive-Affective Stress Management Training (SMT) in an athletic setting. The outcome data from cognitive and performance measures provided converging evidence that SMT can help athletes control potentially stressful situations and enhance performance.

Applied experimental evaluation of complex treatment programs must be concerned with internal validity or local molar validity (Campbell, 1987). Local molar validity recognizes that treatment programs like SMT are often "complex hodgepodge (from the point of view of analytic-theoretical science) which has been put together by expert clinical judgement, and not on the basis of the already proven efficacy of its theoretically pure components" (Campbell, 1987, p. 415). Within the present study, we can only assess whether the SMT program that was applied made a real difference with the group of high performance youth volleyball players during the specific treatment time frame. Evidence that SMT was effective in some domains supports the need for more rigorous experimental studies to clarify the processes involved in effective stress management.

The lack of an anxiety-reducing effect by SMT may be due to several factors. First, the time between assessments may not have been long enough to allow subjects to perceive any changes in their trait anxiety. The instruction to the athletes was to recall how they generally feel when competing. According to Martens (1977), trait anxiety develops from experiences over a lifetime. Therefore it is unlikely that a strong effect on trait anxiety would be produced over 8 weeks, even if players are better able to reduce competitive anxiety. The second factor is related to measuring competitive state anxiety using precompetitive anxiety measures. Players may employ active coping skills only after a specific level of anxiety is experienced. This anxiety may only occur in the competitive period, especially after making a mistake. Therefore the precompetitive period may be inappropriate for valid measures of competitive state anxiety.

A third issue related to the desirability of anxiety reduction addresses the notion of optimal levels of anxiety. Heightened levels of precompetitive anxiety may have adaptive consequences. Janis (1958) referred to this as the "work of worry." Anxiety levels may serve as a cue to initiate coping strategies required for successful performance. Reducing anxiety levels below this "trigger" level may be dysfunctional in that athletes are not properly prepared for the stressful event.

A fourth issue related to anxiety effects deals with some of the underlying theoretical assumptions of the SMT model. Smith (1980) stated that the SMT program was based on a cognitive view of emotion (e.g., Lazarus, 1966). A basic assumption of this viewpoint is that cognitive appraisal of a situation is the primary
determinant of the emotion experienced (see also Weiner, 1985). In this sense, affect and cognition are dependent. An alternative viewpoint is that affect and cognition are interrelated but independent systems (see Izard, 1984; Zajonc, 1984). In some conditions, affect may be generated directly by the situation before any higher level symbolic processing, and the affective state cannot be ameliorated by cognitions. The affect-reducing strategies of progressive relaxation and meditation may not be appropriate, especially during the limited time available during a competition. It is possible that all the strategies present in the SMT program are only reactive strategies in preventing continual dysfunctional ideation after the occurrence of an event. The relationship between affect and cognition needs to be clearly investigated because of its implications for stress management programs.

Despite the limitations present in a quasi-experimental study, the present findings that SMT was effective in the cognitive and performance domains adds to the growing literature that coping skills training does aid in the management of the stress process. Adjunct research into Stress Inoculation Training (SIT) clearly supports the efficacy of the coping skills model (e.g., Mace & Carroll, 1985; Meichenbaum, 1985; Ziegler et al., 1982). Current research in social and clinical psychology implies that stress management programs must carefully consider the complexity of coping mechanisms in the transactional process because coping is neither a single unitary mechanism nor static (Folkman & Lazarus, 1985; Meichenbaum, 1985). Clearly, more research is required on the role of coping in buffering stress processes in athletic situations.

There is growing evidence that the SMT program is effective across sporting populations in modifying variables related to the stress process, as well as performance itself. This support has important implications for the physical training and psychological development of athletes. The SMT program can be adapted to become integrated into the technical and physical training programs to promote holistic development of the athlete. It can help athletes understand how mental and physical skills can reduce stress. Finally, it can help athletes and coaches (Smith, 1986) acquire coping skills to manage distressing athletic situations, and potentially generalize to aid in managing predictable and unpredictable events in life. For example, one player reported using the coping skills to help reduce anxiety in preparing for school examinations.

There is little doubt that emotion is critical to understanding athletic behavior. Additional research is needed to further our knowledge of the appraisal process ((Vallerand, 1987; Weiss, 1986) and coping resources (Folkman & Lazarus, 1985) in the stress process.

References

Acknowledgments

The author would like to thank Marcel Bouffard and two anonymous reviewers for their comments on earlier drafts of this manuscript. This research was supported in part by an Izzak Walton Killiam Memorial Postgraduate Scholarship to the first author.

Manuscript submitted: December 14, 1987
Revision received: May 2, 1988