The Effects of Low and High Glycemic Index Meals on Time-Trial Performance

Laura J.S. Moore, Adrian W. Midgley, Gemma Thomas, Shane Thurlow and Lars R. McNaughton

Address all correspondence to:
Professor Lars McNaughton
University of Hull
Department of Sport, Health and Exercise Science
Cottingham Road
Hull HU6 7RX
United Kingdom
Abstract

Purpose: The aim of this work was to determine whether the consumption of pre-exercise high or low glycemic index (GI) meals has a beneficial effect on time trial performance. Methods: Eight male cyclists were provided with either a high GI or low GI meal, providing 1g.kg⁻¹ body mass of carbohydrate, 45 min prior to performing a 40km time trial on a Velotron cyclePro©. Results: Time trial performance was significantly improved in the low GI trial (92.5 ± 5.2min) compared to the high GI trial (95.6 ± 6.0 min) (p= 0.009). Blood glucose concentrations at the point of exhaustion were significantly higher in the low GI trial (5.2± 0.6 mmol.l⁻¹) compared to the high GI trial (4.7± 0.7 mmol.l⁻¹) (p= 0.001). There was no significant difference in estimated carbohydrate oxidation data between the low GI (2.51 ± 1.74 g.min⁻¹) and high GI (2.18 ± 1.53 g.min⁻¹) meals (p= 0.195). No significant difference in estimated fat oxidation was observed between the low GI (0.15 ± 0.15 g.min⁻¹) and high GI (0.29 ± 0.18 g.min⁻¹) diets (p= 0.83). Conclusions: The improvement in time trial performance for the low GI trial may be associated with an increased availability of glucose to the working muscles, contributing additional carbohydrate for oxidation and possibly sparing limited muscle and liver glycogen stores.
The ability to perform prolonged aerobic exercise is determined predominantly by fuel availability. Many studies have investigated the ergogenic value of consuming carbohydrate before\(^1\), during\(^2\), or after\(^3\) an exercise bout and there is a plethora of evidence to suggest that carbohydrate consumption significantly enhances endurance performance (e.g.\(^4\)). The potential mechanisms for this effect could be attributed to either a reduction in muscle glycogen utilization\(^5\) or maintenance of blood glucose levels\(^6\) during exercise.

Christensen and Hansen\(^7\) established a link between hypoglycaemia and fatigue by showing that maintenance of euglycemia and carbohydrate oxidation late in exercise can delay fatigue. Additionally, previous research has demonstrated that ingesting carbohydrate that prevents a hypoglycaemic response prior to prolonged exercise may result in improved athletic performance by increasing blood glucose oxidation when intramuscular glycogen stores become compromised.\(^1\), \(^8\) Such meals that elicit these reduced blood glucose responses have typically been found to have a reduced glycemic index (GI).

The glycemic index was first proposed by Jenkins et al.\(^9\) in order to describe the blood glucose responses to carbohydrate foods. Previous research into the effects of manipulating the glycemic index on exercise performance remains equivocal. Research has found consuming meals with a low glycemic response (GI< 40) to be associated with an improvement in exercise performance compared with the consumption of high GI meals (GI> 70) (for e.g.\(^10\), \(^11\), \(^12\), \(^13\), \(^14\)). These observed improvements in exercise performance have typically been attributed to metabolic alterations that favour utilisation of fatty acids as a fuel, and a subsequent sparing of endogenous glucose and an increased hepatic glucose production late in exercise. However, the benefits of either a low or high GI meal on exercise performance are inconsistent, based on studies showing no beneficial effect of these meals on time trial (TT) performance or time to exhaustion during prolonged exercise (for e.g.\(^15\), \(^16\), \(^17\), \(^18\)). This lack of agreement remains to be explained, but others have attributed it to small differences in study design, such as timing of the meal, exercise intensity, meal composition, and the specific metabolic responses to the meals, all of which may influence the metabolic and performance outcomes.\(^12\) Another important factor to consider when interpreting these studies is the issue of defining and measuring ‘performance’.\(^19\) Direct comparisons between studies cannot be made, as some studies\(^4\), \(^12\), \(^18\) employed a total work done in a fixed time (endurance performance) protocol, whereas others\(^10\), \(^13\), \(^14\) have employed a time to exhaustion (endurance capacity) protocol. The latter protocol can be associated with a high coefficient of variation with respect to time\(^19\) and a lack of ecological validity.

Hence, on the basis of previous work, the purpose of the present study was to investigate the influence of the GI of a pre-exercise meal on exercise performance under conditions which closely represent a sporting situation. Recently, Schenk et al.\(^20\) reported it was not the GI of a food which shows the rate at which carbohydrate is absorbed into the blood as glucose, but more by directly measuring glucose kinetics for example the rate of appearance of glucose (Ra\(_{glucose}\)). However, as this could not be assessed in the present study, the low and high GI breakfast cereals used in this study were similar to that used in Schenk’s et al.\(^20\) as they demonstrated that the lower GI of the breakfast cereal was due to an earlier increase in the rate of glucose disappearance, which subsequently reduced the increase in plasma glucose concentration.

It was hypothesized that there would be a significant improvement in TT performance after the ingestion of a low GI CHO meal compared to a high GI CHO meal and that this improvement would be associated with maintained blood glucose levels in the low carbohydrate trial.

**Methods**

**Participants:** eight well trained, but not elite male cyclists volunteered to participate in the study. Their mean (± SD) age, height, mass, and VO\(_{2}\text{max}\) were 29.4 ± 6.4y, 182.0 ± 7.9cm, 76.7 ± 10.9kg, and 58.2 ± 10.1mL.kg\(^{-1}\).min\(^{-1}\), respectively. Subjects were included in the study if they cycled five or more times/week. The subjects cycled approximately ~150km per week. Height was measured to the nearest 1.0cm without shoes (Stadiometer, Holtain Ltd, Crymych, Dyfed). Body mass was measured to the nearest 0.1kg with the subject wearing cycling
shorts (Scales, Vogel and Halbe, Hamberg, Germany). The study was approved by the Departmental Ethics Committee and all subjects gave their written informed consent in accordance with university guidelines for the protection of human subjects.

**Experimental design:** each subject participated in two 40km time trials (TT) on a Velotron cyclePro © ergometer, separated by at least seven days. This ergometer has been previously found to have a low between trial coefficient of variation and a highly reproducible performance in competitive cyclists. Two different carbohydrate test meals providing 1g·kg·BM⁻¹ of carbohydrate were ingested 45 min prior to the onset of exercise. This study was carried out in a randomised, double-blinded, cross-over fashion. Subjects followed the same diet and training schedule during the 2d prior to each experimental trial, which was verified by a food/training diary analysis. Subjects refrained from strenuous exercise, caffeine and alcohol consumption in the 24h period prior to each experimental trial. The pre-exercise test meals were consumed while the subjects were seated in a quiet section of the laboratory. Subjects were also required to complete and sign a checklist to confirm that all of the pre-test procedures had been followed. The humidity of the laboratory during testing was 48 ± 5% with mean ambient temperatures of 22 ± 2°C.

**Experimental Protocol:** each subject reported to the laboratory following a six hour fast. Two days prior to the first trial, the subjects recorded their diet and exercise patterns to standardize carbohydrate intake and activity levels so that it could be repeated before each trial. After sitting for five min, each subject gave a resting fingertip blood sample taken from the right index finger, and a 5 min resting expired air sample was also collected via standard open circuit spirometry (Cosmed b² Cosmed, Italy). The subjects were then provided with a standardised meal that provided 1g·kg·BM⁻¹ of carbohydrate, which was composed of either high glycemic index (high GI) or low glycemic index (low GI) carbohydrates in a randomised, double-blind cross-over design (see below). The subjects had 10 min to consume the test meal and rested for the next 45 min before they commenced the prescribed exercise protocol. Subjects were provided with water ad libitum during trial 1 and this was then matched for the second trial. A 15 min post-prandial fingertip blood sample was then collected and a heart rate (HR) monitor (Polar Electro, OY, Finland) was attached to the subject. A final pre-exercise fingertip blood sample was obtained 10 min before the onset of exercise.

Following a standardised 5 min warm up at 50 W, the subjects were required to complete the 40km TT in as short a time as possible. Five minute expired air samples were collected during the last 5 min of every 20 min time period throughout the TT and fingertip blood samples were collected in the last min. The last expired air sample was collected during the last 3km of cycling and the last fingertip blood sample was taken immediately following termination of the trial while the subjects were still seated on the Velotron cyclePro©. The subjects were required to wear the mask of the Cosmed only at each sampling point throughout the trial. Heart rate and ratings of perceived exertion (RPE), using Borg 6-20 point scale, were also recorded every 15 min. After the final seated fingertip blood sample was obtained and the subjects had rested they were then allowed to leave the laboratory.

The subjects were not aware of their performance times, HR or distance travelled, but they were given a verbal reminder every 15 min that they were required to continue until they reached the set distance or their limit of exercise tolerance.

**Test meals:** after the collection of baseline data, test meals consisting of high GI or low GI foods were provided for each subject prior to each trial. The meals were consumed in the lab...
45 min before the onset of exercise. The test meals contained 1g·kg·BM\(^{-1}\) of either high or low glycemic index carbohydrates and were similar in macronutrient content (Table 1). The high glycemic index (high GI) meal consisted of Cornflakes (Kelloggs Co., Manchester, UK) and semi-skimmed milk (GI: 72) whereas the low glycemic index (low GI) meal consisted of Bran flakes (Kelloggs Co., Manchester, UK) and semi-skimmed milk (GI: 30). The GI of the total diets was calculated from the weighted means of the GI values for the component foods. The GI values of each test food were taken from Henry et al.\(^{24}\) and the GI of the total meal was calculated from the weighted means of the GI values for the component foods.\(^{25}\) To ensure that each participant consumed a standardized volume of fluid (650ml), each subject consumed a specific amount of water and milk with each meal.

**Sample Collection and Analysis**

**Gas analysis:** Expired air was measured breath-by-breath using an automated open-circuit gas analysis system (Quark b\(^2\), Cosmed Srl, Rome, Italy). The gas analysers were calibrated immediately prior to each test using ambient air (assumed to contain 20.94% oxygen and 0.03% carbon dioxide), and certified alpha standard gases containing 16.0± 0.03% oxygen and 5.0 ± 0.02% carbon dioxide (Cryoservice Ltd, Worcester, UK). The turbine flow meter used for the determination of minute ventilation has a resistance of <0.07 cmH\(_2\)O L.s\(^{-1}\), an accuracy of ± 2%, and was calibrated with a 3-L syringe (Cosmed Srl, Rome, Italy) immediately before each test. Using this data, substrate oxidation rates and energy expenditure were calculated from VO\(_2\) and VCO\(_2\) values using stoichiometric equations\(^{26}\) and RER was also obtained.

**Blood analysis:** Blood glucose and lactate were analysed immediately in duplicate using an YSI 2700 Stat (Yellow Springs Instrument, Yellow Springs, USA). Serum was measured prior to and at the end of each exercise trial and analyzed for osmolality using a Micro osmometer model 3320 (Advanced Instruments Inc. Massachusetts, USA). The coefficient of variation for glucose and lactate analysis in our laboratory and on this instrument is <3.8% for both analytes.

**Statistical Analysis:** A repeated measures analysis of variance (ANOVA) on two factors (experimental treatment and time) was used to determine metabolic and performance differences between trials. If a significant difference was determined a post-hoc test was used to locate the difference. Differences were considered statistically significant at the \(P < 0.05\) level. All analyses were conducted using SPSS\(^{30}\) statistical software for Windows version 14.0 (SPSS Inc., Chicago, IL, USA). All data are presented as mean ± standard deviation.

**Results**

**TT Performance:** there was a significant improvement in 40km time trial performance following the consumption of a low GI meal compared to a high GI meal. The average TT time in the low GI trial (92.5 ± 5.2min) was significantly shorter than the high GI trial (95.6 ± 6.0 min) (\(p = 0.009\)) (see Table 2).

**Heart Rate and RPE:** There was a significant main effect for time (\(p= 0.001\)) but not treatment (\(p= 0.81\)) on heart rate between the two trials. There was no significant treatment by time interaction for heart rate (\(p= 0.17\)) (see Table 3).

There was a significant main effect for both time (\(p= 0.001\)) and trial (\(p= 0.039\)) for RPE with the values increasing over time to a maximum value of 17 and 15 for high GI and low GI, respectively. There was no significant treatment by time interaction though for RPE (\(p= 0.17\)) (see Table 2)

**Substrate Utilization and Respiratory Exchange Ratio (RER):** The estimated CHO oxidation rates, as calculated from the VO\(_2\) and VCO\(_2\) values, indicated there was a significant main effect for both time (\(p = 0.001\)) and treatment (\(p= 0.003\)) during the TT following the consumption of a low GI meal (2.51 ± 1.74 g.min\(^{-1}\)) compared to the consumption of a high GI meal.
meal (2.18 ± 1.53g.min⁻¹) (Figure 1a). There was however, no significant treatment by time interaction for carbohydrate oxidation (p= 0.195). A significant main effect for both time (p=0.001) and treatment (p= 0.002) was observed for fat oxidation rates in the high GI trial (0.29 ± 0.18 g.min⁻¹) compared to the low GI trial (0.15 ± 0.15 g.min⁻¹) (Figure 1b). There was no significant treatment by time interaction for fat oxidation, however, (p= 0.83) (Figure 1b).

There was a significant main effect for both time (p= 0.001) and treatment (p= 0.001) on RER which shows that the RER values were higher throughout the low GI trial (0.93 ± 0.035) compared with the high GI trial (0.90 ± 0.04). There was no significant treatment by time interaction for RER (p= 0.22) (see Table 3).

Blood Glucose: Following the consumption of the high GI meals, the blood glucose concentration rose significantly from 4.5 ± 0.5 to 7.3 ± 2.4mmol.l⁻¹ for the high GI trial compared to 4.6 ± 0.4 to 5.5± 1.7 mmol.l⁻¹ for the low GI trial (p= 0.005). During the TT the mean blood glucose concentrations were maintained between 4 and 5mmol.l⁻¹ for both the low GI and high GI trials. However, during both the low GI and high GI trials two subjects experienced a drop in blood glucose levels below 3.5mmol.l⁻¹ although no symptoms of hypoglycaemia were reported. There was a significant interaction effect between time and trial (p< 0.001) for blood glucose concentration. After 20 min of exercise, blood glucose levels throughout the low GI trial remained higher than the high GI trial values at all remaining time points (NS). At the point of exhaustion blood glucose concentrations were significantly higher in the low GI trial (5.2 ± 0.6 mmol.l⁻¹) compared to the high GI trial (4.7 ± 0.7 mmol.l⁻¹) (p= 0.001) (see Figure 2a).

Blood Lactate: There was a significant main effect for time (p= 0.001) but not treatment (p= 0.39) on blood lactate concentrations between the high GI and low GI trials. Pre- exercise values were similar for the high GI (1.3 ± 0.4mmol.l⁻¹) and low GI trials (1.1 ± 0.6mmol.l⁻¹) but at the onset of exercise lactate levels for the high GI and low GI meals increased significantly to 5.1 ± 2.2 and 5.0 ± 1.9mmol.l⁻¹, respectively (p= 0.001). These lactate concentrations decreased gradually throughout the trial to a minimum value of 2.8 and 2.8mmol.l⁻¹ at 60 min, but increased significantly at the point of exhaustion for the high GI (4.7 ± 2.4mmol.l⁻¹) and low GI trial (4.9 ± 1.0mmol.l⁻¹) (p= 0.001). There was no significant interaction between the trials and blood lactate (p= 0.21) (see Figure 3).

Osmolality: Mean osmolality values were 295.3 ± 4.7 mosmol.kg⁻¹ and 297.8 ± 4.4 mosmol.kg⁻¹ for the high GI and the high GI and low GI trials respectively, at the point of exhaustion.

Discussion

The main finding of the present study was that the ingestion of a low GI carbohydrate meal 45 min prior to the onset of exercise, resulted in a greater endurance performance during a 40km TT compared with the consumption of a high GI carbohydrate meal. The low GI meal was associated with significantly increased blood glucose concentrations at the point of exhaustion, compared to the high GI meal; however, there was no significant difference in substrate oxidation rates between the low and high GI meals, which is in contrast to most previous research. These studies did, however assess endurance capacity and not performance as in the present study, therefore a direct comparison cannot be made. The performance data from the present study are consistent with previous research, demonstrating that the ingestion of low GI carbohydrate foods before exercise is associated with enhanced exercise performance. The effect of the GI of a pre- event meal on exercise performance has received considerable attention on recent years. Thomas et al. were amongst the first to show that a meal with a low GI (GI= 29) extended the time to exhaustion during exercise by 20 min when compared with a meal with a high GI (GI = 98). Additionally, DeMarco et al. confirmed the advantage of a low GI (GI = 36) meal over a high GI (GI = ~70) meal when they found exercise time was 59% longer during a maximal effort after 2 hours of submaximal cycling. Kirwan et al. previously reported that the sweetened form of rolled oats cereal (GI = ~63) could increase exercise duration during submaximal cycling exercise by 16% (~ 41 min) compared with a water control. More recently, Stevenson et al. demonstrated that the ingestion of a low GI diet significantly improved endurance
capacity compared to a high GI diet. From these reports, it would appear that low and/or moderate GI meals confer a performance advantage over a high GI meal or water. However, support for this observation has lacked consistency and subsequent studies have shown no beneficial effect of either high GI or low GI meals on time trial performance at the end of steady-state cycling or in time to exhaustion during treadmill running.\textsuperscript{15, 16, 18}

The metabolic data of the present study show that significantly greater blood glucose levels at the point of exhaustion were found after the low GI meal (5.2 ± 0.6mmol.l\textsuperscript{-1}) compared to the high GI meal (4.7 ± 0.7mmol.l\textsuperscript{-1}). Additionally, the low GI meal was associated with a longer time to exhaustion, which suggests that there was sufficient glucose to provide energy to the working muscle during the extended working time. This finding corroborates previous research in that those who demonstrated an improvement in performance had glucose levels which were significantly higher than control levels\textsuperscript{10, 12, 14}, whereas, when no performance improvement was observed, glucose levels were not different from control levels.\textsuperscript{15, 16, 18}

Therefore, it appears that the improvement in exercise performance may be dependent on whether the pre-exercise meal can maintain adequate euglycaemia during exercise to sustain CHO oxidation as supported in this study. In support of this observation, it has previously been shown that carbohydrate feedings, which prevent a hypoglycaemic response may enhance exercise performance by increasing the availability of glucose to the working muscles\textsuperscript{1, 6}, contributing additional CHO for oxidation and sparing limited muscle and liver glycogen stores.\textsuperscript{8, 6, 12} These data are consistent with the hypothesis that pre-exercise carbohydrate ingestion can spare hepatic glycogen early in exercise, sustain hepatic glucose output for a longer period, and increase exercise time.\textsuperscript{1, 9} Our data showing an increase in hepatic glucose output at the end of 1-2 h of exercise add to these findings and suggest that the sparing of hepatic glycogen early in exercise allows for greater glucose output when the exercise is very prolonged. Additionally, the post-prandial glucose kinetics of the present study may be explained by Schenks \textit{et al.}\textsuperscript{20} findings that the plasma glucose concentration is a function of both the rate of appearance of glucose (Ra\textsubscript{glucose}) into the systemic circulation and the rate of disappearance of glucose (Rd\textsubscript{glucose}) from the systemic circulation. Schenks\textsuperscript{20} showed that the more than 2-fold lower GI for the bran cereal compared to the high GI cornflakes was more as a result of an earlier increase in Rd\textsubscript{glucose} rather than to differences in the Ra\textsubscript{glucose}. This increase in Rd\textsubscript{glucose} was associated with an earlier and significantly augmented insulin response during the initial 20 min period. This could explain the post-prandial results of the present study as similar breakfast cereals were used.

The increase in carbohydrate oxidation associated with the low GI meal compared to the high GI meal may also offer some explanation for the observed improvement in performance. Whereas, previously, when a meal causes a hyperinsulinaemic state at the start of the exercise there may be a sustained suppression of FFA and a corresponding increase in the use of carbohydrate as fuel early in exercise.\textsuperscript{3, 6, 11, 12} This increase in carbohydrate oxidation in the initial period of exercise may stimulate greater rates of glycogenolysis and early depletion of stored glycogen, leading to hypoglycaemia, which is believed to be the primary cause of fatigue during prolonged bouts of exercise.\textsuperscript{3, 6, 11} Some studies showing no improvement in exercise performance\textsuperscript{15, 16} have suggested that this is a result of this hyperinsulinaemic state at the start of the exercise and subsequent sustained suppression of FFA and corresponding increased use of carbohydrate as fuel early in exercise.\textsuperscript{3, 6, 11, 12} However, in the present study, the RER and carbohydrate oxidation data indicate that carbohydrate oxidation was actually greater throughout the trial following the consumption of a low GI meal compared to a high GI meal. This greater carbohydrate oxidation observed in our low GI trial suggests that the meal may have contributed additional carbohydrate for oxidation and subsequently spared limited muscle and liver glycogen stores as previously suggested.\textsuperscript{6, 12, 13} This additional carbohydrate may have also provided a greater contribution of exogenous glucose to fuel use during the exercise bout.

It has been reported that fatigue can also occur due to impairment to one or more links in the chain from the central nervous system (CNS) to the contractile elements.\textsuperscript{27} Research by Nybo\textsuperscript{28} observed that when glucose levels dropped to hypoglycaemic levels (~3mmol.l\textsuperscript{-1}), the average force produced during a sustained maximal muscle contraction was reduced and this was associated with a reduced activation drive from the CNS. However, in the present study, as mean blood glucose levels did not drop below 5.0mmol.l\textsuperscript{-1} during the high GI trial, central
fatigue may not be a cause of the reduced TT performance observed in this group. Additionally, optimal sports performance is also dependant on maintaining a positive mood state. Welsh et al. observed that the ingestion of a carbohydrate solution was associated with both an improved exercise to exhaustion time and motor skill proficiency during the latter stages of exercise. Subjects also reported feeling less fatigued at the end of the shuttle run even though they were unable to maintain running speed towards the end of the exercise. However, in the present study, there was no significant difference in self-reported perception of fatigue as assessed by the RPE scale between the high GI and low GI trial, which suggests that the CNS fatigue is not a contributory factor to the reduced TT performance observed in the high GI trial.

There was also no significant difference observed in blood lactate concentration between the low GI and high GI trials. Since accumulation of lactate results in a concomitant increase in hydrogen (H⁺) ions and a subsequent reduction in pH, contributing, potentially to the development of fatigue, the lack of difference in blood lactate observed in this study suggests that the reduced performance in the high GI trial is unlikely to be due to increased acidity of the muscle or blood. Additionally, at the point of exhaustion, the mean osmolality values for the high and low GI trials were within the normal ranges indicative of euhydration.

Practical Applications. The ingestion of a low GI meal containing 1g·kg·BM⁻¹ of carbohydrate, 45 min before performing a 40km TT cycling protocol, significantly improved performance compared to a high GI meal. The possibilities of a hypoglycaemic effect, increased muscle acidity or dehydration affecting performance have been ruled out. Possibly an increase in the availability of carbohydrate and a greater carbohydrate oxidation throughout the exercise period may explain the observed improvements in TT performance in the low GI trial. These data therefore, support the ingestion of a meal containing 1g·kg·BM⁻¹ of low GI content before prolonged exercise.
References


### Table 1

**Characteristics of test meals for a 70k subject**

<table>
<thead>
<tr>
<th>Meal</th>
<th>Description</th>
<th>Macronutrient Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-GI breakfast</td>
<td>68g Cornflakes, 282ml semi-skimmed milk, 368ml water.</td>
<td>386kcal 70g carbohydrate 6g fat 16g protein 2g fibre GI= 72*</td>
</tr>
<tr>
<td>Low-GI breakfast</td>
<td>81g Bran flakes, 337ml semi-skimmed milk, 313ml water.</td>
<td>422kcal 70g carbohydrate 8g fat 19g protein 12g fibre GI= 30*</td>
</tr>
</tbody>
</table>

Macronutrient breakdown of high GI and low GI test meals provided to each subject calculated from manufacturer’s information. *calculated by the method of Wolever and Jenkins.25 Glycemic index values from Henry et al.24
Table 2
Performance times for each participant during the High Glycaemic Index (high GI) and Low Glycaemic Index (low GI) CHO trials.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Low GI (mins)</th>
<th>High GI (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96</td>
<td>96.8</td>
</tr>
<tr>
<td>2</td>
<td>93.7</td>
<td>98.7</td>
</tr>
<tr>
<td>3</td>
<td>86.3</td>
<td>91.4</td>
</tr>
<tr>
<td>4</td>
<td>98.7</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>96.1</td>
<td>95.7</td>
</tr>
<tr>
<td>6</td>
<td>89.9</td>
<td>93.5</td>
</tr>
<tr>
<td>7</td>
<td>94.8</td>
<td>98.9</td>
</tr>
<tr>
<td>8</td>
<td>84.1</td>
<td>85</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>92.5 ± 5.2*</td>
<td>95.6 ± 6.0</td>
</tr>
</tbody>
</table>

* Significantly lower than the High GI trial.
Statistical significance is set at the P < 0.05 level.
Table 3 Heart rate (HR), Respiratory Exchange Ratio (RER) and Ratings of Perceived Exertion (RPE) during the High Glycaemic Index (high GI) and Low Glycaemic Index (low GI) CHO trials. Data are presented as Means ± SD of the mean.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Trial</th>
<th>Baseline</th>
<th>45pp</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (b.min$^{-1}$)</td>
<td>HIGH GI</td>
<td>62± 14</td>
<td>64± 12</td>
<td>161± 15*</td>
<td>163± 16*</td>
<td>164± 15*</td>
<td>173± 14*</td>
</tr>
<tr>
<td></td>
<td>LOW GI</td>
<td>59± 14</td>
<td>63± 12*</td>
<td>168± 8*</td>
<td>167± 8*</td>
<td>172± 7*</td>
<td>174± 9*</td>
</tr>
<tr>
<td>RER</td>
<td>HIGH GI</td>
<td>0.85± 0.06</td>
<td>0.86±0.05</td>
<td>0.93±0.03*</td>
<td>0.92±0.03*</td>
<td>0.89±0.04*</td>
<td>0.95± 0.07*</td>
</tr>
<tr>
<td></td>
<td>LOW GI</td>
<td>0.89± 0.09</td>
<td>0.92± 0.04</td>
<td>0.98± 0.03*</td>
<td>0.93± 0.02*</td>
<td>0.91± 0.03*</td>
<td>0.97± 0.05*</td>
</tr>
<tr>
<td>RPE</td>
<td>HIGH GI</td>
<td>6± 0</td>
<td>7± 1</td>
<td>15± 2*</td>
<td>16± 2*</td>
<td>16± 2*</td>
<td>17± 3*</td>
</tr>
<tr>
<td></td>
<td>LOW GI</td>
<td>6± 0</td>
<td>6± 0</td>
<td>13± 2*</td>
<td>15± 1*</td>
<td>15± 0*</td>
<td>15± 2*</td>
</tr>
</tbody>
</table>

* Significantly different from baseline. Statistical significance is set at the P < 0.05 level.
Figure 1a
Mean (± SD) Carbohydrate oxidation throughout the trial. *P < 0.05 (from 45pp to all other time points).

Figure 1b
Mean (± SD) Fat oxidation throughout the trial. *P < 0.05 (from 45pp to 40 and 60 min).
Figure 2
Mean (± SD) Blood glucose concentration throughout the trial. *P= < 0.05 (at 45pp and exhaustion).

Figure 3
Mean (± SD) Blood lactate concentration throughout the trial. *P= < 0.05 (from 45pp to all other time points and at exhaustion).