Is There a Valid App for That?
Validity of a Free Pedometer iPhone Application

Randall J. Bergman, Justin W. Spellman, Michael E. Hall, and Shawn M. Bergman

Background: This study examined the validity of a selected free pedometer application (iPedometer; IP) for the iPhone that could be used to assess physical activity. Methods: Twenty college students (10 men, 10 women; mean age: 21.85 ± 1.57 yrs) wore an iPhone at 3 locations (pocket, waist, arm) and a StepWatch 3 Step Activity Monitor (SW) on their right ankle while walking on a treadmill at 5 different speeds (54, 67, 80, 94, 107 m·min⁻¹). A research assistant counted steps with a tally counter (TC). Results: Statistical significance between the TC, SW, and IP was found during every condition except IP in the pocket at 107 m·min⁻¹ (F[2,38] = .64, P = .54). Correlations involving the IP revealed only 1 positive correlation (IP on arm at 54 m·min⁻¹) for any of the conditions (r = .46, P = .05). Conclusion: The IP application was not accurate in counting steps and recorded significantly lower step counts than the SW and TC. Thus, the free pedometer application used is not a valid instrument for monitoring activity during treadmill walking.

Keywords: step watch, physical activity, accuracy

Although the benefits of physical activity are widely known and well documented1–3 many people are insufficiently active to achieve health benefits. This lack of physical activity is one component of the obesity epidemic in the United States. Healthy People 2020 has objectives to increase the amount of physical activity performed by all Americans.4 All Americans are encouraged to accumulate 150 minutes of moderate-intensity activity per week to promote cardiorespiratory health.2,5 Studies have shown that 30 minutes of brisk walking is equal to 3100 to 4000 steps, depending on age.6,7 Researchers advocate taking a total of 10,000 steps per day for cardiovascular disease prevention.8

The emphasis on increasing physical activity has driven the need to accurately assess the amount of activity an individual participates in per day. Pedometers and accelerometers can motivate individuals to be more physically active and have become the standard tool for objectively measuring physical activity.7,9–11 Studies have reported the accuracy of different pedometers in assessing physical activity at different walking speeds.12–15 In general, it has been shown that waist-mounted pedometers increase in accuracy as walking speed increases.12

Since the iPhone 3G premiered in the U.S. in July of 2008 it has increased in popularity, currently it ranks second in U.S. cellular phone sales.16 Typically, cellular phones do not have specific placement requirements for the pedometer applications because of the built-in accelerometer.17 Their placement depends on where the user is most comfortable carrying the phone. It could be placed in a pocket, attached to the waist band with a clip or to the arm with an armband. Other pedometers have placement requirements (midline of the thigh) due to the mechanisms used for recording steps. The location of these pedometers may affect their accuracy.18 When considering the recommendations for physical activity and the popularity of the iPhone and its many applications, it is important to have these pedometer applications validated. The purpose of this study was to investigate the accuracy of one of the free pedometer applications for the iPhone.

Methods

Participants

A convenience sample of 20 healthy college students [10 men, 10 women; mean age = 21.85 ± 1.57; body mass index (BMI) = 26.24 ± 5.80] were recruited for this study. The sole exclusion criterion was being nonambulatory. The procedures were approved by the Institutional Review Board (IRB) at Missouri Western State University. Each participant completed a Physical Activity Readiness Questionnaire (PAR-Q) and signed an informed consent before participating. Physical characteristics of the participants are presented in Table 1.
Table 1 Physical Characteristics of the Participants

<table>
<thead>
<tr>
<th></th>
<th>Men (N = 10)</th>
<th>Women (N = 10)</th>
<th>All participants (N = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>21.90 ± 1.85</td>
<td>21.80 ± 1.31</td>
<td>21.85 ± 1.57</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>180.77 ± 10.98</td>
<td>168.70 ± 0.04</td>
<td>174.73 ± 10.15</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>92.96 ± 15.18</td>
<td>68.14 ± 14.79</td>
<td>80.55 ± 19.36</td>
</tr>
<tr>
<td>BMI (kg·m⁻²)</td>
<td>28.68 ± 6.15</td>
<td>23.79 ± 4.45</td>
<td>26.24 ± 5.80</td>
</tr>
</tbody>
</table>

Note. Values are means ± standard deviation.

Abbreviations: BMI, Body Mass Index.

Protocol

Procedures were similar to those used by Crouter, Schneider, Karabulut, and Bassett. All participants wore athletic shorts with pockets, comfortable walking shoes, and had their height and weight measured without shoes with a stadiometer and calibrated physician’s scale. For the first trial the participant placed the iPhone (Apple, Inc.) in their right pocket. The second trial the phone was secured to the waist band at the midline of the right thigh using a horizontal case. In the third trial it was secured to the upper right arm using an armband. The walking speeds for each trial were 54, 67, 80, 94, 107 m·min⁻¹ (2.0, 2.5, 3.0, 3.5, 4.0 mph) at 0% grade on a motor driven treadmill (Quinton Instrument Company). An ankle-mounted StepWatch 3 Step Activity Monitor (SW; Orthocare Innovations; r ≥ .99; 19–20) was placed on the right ankle and set to normal sensitivity. A research assistant counted steps with a tally counter (TC). The participant would walk at the given speed for 2 minutes then stop and straddle the belt for 2 minutes. While straddling the belt values of the iPhone pedometer application and TC were recorded onto a data collection sheet and the treadmill speed increased. This break also allowed the data collected from the SW to be easily separated after downloading it into the computer software at the end of all trials. A total of 5 SWs and 5 IPs were rotated.

Instruments

All of the phones used in this study were 3G, 16G with built-in accelerometers. Version 1 (released in September of 2009) of the free pedometer application, iPedometer (Tomato, Inc.), (IP) was downloaded to each phone. The SW pedometers used in this study are completely sealed microprocessor-controlled step counters. Programming and downloading are controlled with the StepWatch Analysis Software. This software programs the SW monitor before deployment, and downloads it to the computer via a USB-compatible docking station for viewing at the end of the recording session. Sensitivity of the instrument is optimized for each subject’s gait characteristics by programming in the subject’s height and answering questions that describe the subject’s gait. Data were collected in 1-minute time intervals.

Statistical Analysis

All analyses were conducted using SPSS 17.0 for Windows (SPSS Inc., Chicago, IL). Statistical significance was set at *P* < .05 unless otherwise noted. The SW and TC only counted steps for 1 leg, therefore SW and TC steps were doubled to enable comparison. One-way repeated-measures ANOVAs were used to assess differences between pedometers and observed step counts. In the case of a significant main effect, Least Significant Difference (LSD) post hoc analysis was used to determine between which methods of measurement differences occurred. Correlations between pedometers and observed step counts were examined. Data were analyzed using Pearson product moment correlations for the IP, SW, and TC.

Error scores were computed (TC minus pedometers steps) to determine congruency, according to the method of Bland and Altman. This graphical representation shows the variability in individual step counts around 0 and signifies the best possible estimate of the actual value. The mean error score can be illustrated and the 95% confidence interval (for individual observations) can also be denoted. Tight prediction intervals around 0 signify that measures for the 2 comparison devices are congruent. Scores over 0 (positive scores) indicate underestimation of steps relative to the TC and scores under 0 (negative scores) indicate overestimation of steps relative to the TC.

Results

Data analysis indicated statistically significant differences (*P* < .001) for every iPhone location and speed except for in the pocket at 107 m·min⁻¹ (F₂,38 = 0.64, *P* = .54). Post hoc analysis with a LSD adjustment revealed that all differences occurred between the IP and SW (*P* < .001) and the IP and TC (*P* < .001). For all analyses the observed power was greater than 0.99, except for 107 m·min⁻¹ with the iPhone in the pocket which had a power of 0.15. Table 2 illustrates the mean error scores, standard error, and 95% confidence intervals between the TC and the pedometers’ measured steps for each condition. Figures 1 to 3 show Bland-Altman plots for selected conditions for each pedometer to illustrate the distribution of the individual error scores around 0 and indicate the best possible guess of the true value being measured. The
Table 2 Error Scores (TC—Pedometers) in Number of Steps for All Conditions

<table>
<thead>
<tr>
<th>Location</th>
<th>Pedometer</th>
<th>Speed (m·min⁻¹)</th>
<th>Mean difference</th>
<th>SE</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pocket</td>
<td>SW</td>
<td>54</td>
<td>–.70</td>
<td>.53</td>
<td>–2.09 to .69</td>
</tr>
<tr>
<td></td>
<td>IP</td>
<td>100.15**</td>
<td>10.14</td>
<td>73.53 to 126.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
<td>–.30</td>
<td>.54</td>
<td>–1.74 to 1.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95.30**</td>
<td>12.61</td>
<td>62.21 to 128.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>–.60</td>
<td>.36</td>
<td>–1.54 to .34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57.30**</td>
<td>16.00</td>
<td>15.29 to 99.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>94</td>
<td>–.40</td>
<td>.34</td>
<td>–1.30 to .50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.50*</td>
<td>15.42</td>
<td>–9.97 to 70.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>107</td>
<td>–1.85</td>
<td>19.72</td>
<td>–67.63 to 35.93</td>
</tr>
<tr>
<td>Waist</td>
<td>SW</td>
<td>54</td>
<td>–.30</td>
<td>.33</td>
<td>–1.18 to .58</td>
</tr>
<tr>
<td></td>
<td>IP</td>
<td>164.95**</td>
<td>5.46</td>
<td>150.62 to 179.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
<td>–.20</td>
<td>.38</td>
<td>–1.20 to .80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>176.75**</td>
<td>5.90</td>
<td>161.27 to 192.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>–.40</td>
<td>.37</td>
<td>–1.38 to .58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>176.20**</td>
<td>7.64</td>
<td>156.14 to 196.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>94</td>
<td>–.80</td>
<td>.40</td>
<td>–1.84 to .24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>163.20**</td>
<td>9.63</td>
<td>137.91 to 188.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>107</td>
<td>–.30</td>
<td>.49</td>
<td>–1.58 to .98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116.75**</td>
<td>13.83</td>
<td>80.46 to 153.04</td>
<td></td>
</tr>
<tr>
<td>Arm</td>
<td>SW</td>
<td>54</td>
<td>.50</td>
<td>.56</td>
<td>–.97 to 1.97</td>
</tr>
<tr>
<td></td>
<td>IP</td>
<td>186.30**</td>
<td>2.43</td>
<td>180.41 to 193.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
<td>.40</td>
<td>.57</td>
<td>–1.10 to 1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>207.60**</td>
<td>2.50</td>
<td>201.05 to 214.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>–.50</td>
<td>.48</td>
<td>–1.76 to .76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>219.75**</td>
<td>2.79</td>
<td>212.43 to 227.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>94</td>
<td>–.60</td>
<td>.60</td>
<td>–2.18 to .98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>229.40**</td>
<td>3.50</td>
<td>220.20 to 238.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>107</td>
<td>–1.30</td>
<td>.69</td>
<td>–3.01 to .50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>224.60**</td>
<td>6.56</td>
<td>207.39 to 241.81</td>
<td></td>
</tr>
</tbody>
</table>

Note. Negative scores indicate overestimations and positive scores correspond with underestimations of observed steps taken.

* P < .05; ** P < .001.

Abbreviations: TC, Tally Counter; SW, StepWatch; IP, iPedometer.

Discussion

This study found that the IP application for the iPhone yielded mean values that were significantly lower than the observed and SW means. The location of the IP (pocket, waist, arm) or walking speeds (54, 67, 80, 94, 107 m·min⁻¹) did not increase the accuracy of the pedometer application. Although data analysis revealed
Figure 1 — Representative Bland-Altman plots for pedometers at 107 m·min⁻¹ and iPhone in pocket. Solid line is mean error score; dashed lines are 95% confidence intervals.

Figure 2 — Representative Bland-Altman plots for pedometers at 107 m·min⁻¹ and iPhone on waist. Solid line is mean error score; dashed lines are 95% confidence intervals.

Figure 3 — Representative Bland-Altman plots for pedometers at 80 m·min⁻¹ and iPhone on arm. Solid line is mean error score; dashed lines are 95% confidence intervals.
no statistically significant difference with the IP in the
pocket at 107 m·min⁻¹, Pearson product moment correla-
tions did not illustrate a significant correlation for that
location and speed.

At these placement locations and walking speeds
the IP was not accurate in step counting. This result is
possibly due to the acceleration of the movement not
producing enough force for a step to be detected. The
accelerometer used in the iPhone is a micro electro-
mechanical system (MEMS)¹⁷ that consist of a deflection
circuit and piezo-electric crystal with a cantilever beam.²³
With most healthy adults walking at approximately 84
m·min⁻¹,²⁴ the last 3 speeds used in this study should
produce enough force to register a step according to other
pedometer studies.¹²,¹⁵,¹⁹ This could be due to the location
of the IP during the trials. These 3 locations were selected
as typical use but other locations could be back pocket,
hand bag or backpack.

If there was indeed a fundamental design flaw
within the software can be resolved by implementing a
better algorithm for the IP via software patch or selec-
tion of a more accurate pedometer application. Finally,
it is possible that the IP or the iPhone cannot sample at
a fast enough rate to count all of the steps. Like previ-
ously stated, if the sampling issue is with the application
software that is easier to resolve. The software can be
improved to record at a faster rate or another application
can be downloaded. If the problem is with the internal
accelerometer then no other application could be expected
to accurately register steps. There are numerous free and
paid for pedometer applications available that could have
more accurate algorithms and quicker sampling rates
that would greatly enhance the ability to precisely count
steps. This study supports previous research that the SW
is a valid step counter¹⁹,²⁰,²⁵–²⁹ with 100% step detection.

Our study is not without limitations. It is acknowl-
edged that treadmill walking is not representative of
normal walking. However, it is valuable to assess step
counters at known walking speeds. It is also recognized
that both the IP and SW are expensive ($300 plus service,
$500 plus $1500 docking station and software, respec-
tively) and might not be the best choice for measuring
activity in the general population. The small convenience
sample limits the generalizability of this study. The sample was chosen due to the large number of college students who use the iPhone. Similar studies used convenient samples comparable in size \(^{12,15,19,20}\) and the reported statistical power is strong enough to show effect without having to increase sample size. In addition, there was no attempt to test the reliability of the TC. Future research should consider video recording each trial to ensure accuracy of the manually counted steps.

In conclusion, the current study found that the free iPedometer application for the iPhone is not a valid instrument when measuring activity at selected placements and walking speeds. The current study only tested one of the numerous free pedometer applications available for the iPhone. Further research with the other pedometer applications, both free and paid, are needed to assess their accuracy at different placements and speeds. In addition, future research should consider using other statistical techniques, such as equivalency testing; to examine the accuracy of pedometers. With the increasing number of adults in the U.S. becoming overweight meeting the recommendations for physical activity is important. Since walking is the primary form of activity for the general population, and with the popularity of “all-in-one” electronic devices, it is essential that pedometer applications on these devices be able to accurately measure steps.

References

Validity of iPhone Application 675

