Bracketed Morality Revisited: How Do Athletes Behave in Two Contexts?

Maria Kavussanu, Ian D. Boardley, Sam S. Sagar, and Christopher Ring

The concept of bracketed morality has received empirical support in several sport studies (e.g., Bredemeier & Shields, 1986a, 1986b). However, these studies have focused on moral reasoning. In this research, we examined bracketed morality with respect to moral behavior in sport and university contexts, in two studies. Male and female participants (Study 1: N = 331; Study 2: N = 372) completed questionnaires assessing prosocial and antisocial behavior toward teammates and opponents in sport and toward other students at university. Study 2 participants also completed measures of moral disengagement and goal orientation in both contexts. In most cases, behavior in sport was highly correlated with behavior at university. In addition, participants reported higher prosocial behavior toward teammates and higher antisocial behavior toward opponents in sport than toward other students at university. The effects of context on antisocial behavior were partially mediated by moral disengagement and ego orientation. Our findings extend the bracketed morality concept to prosocial and antisocial behavior.

Keywords: prosocial behavior, antisocial behavior, morality, contact sport

Moral behavior in sport has attracted considerable research attention in recent years (see Kavussanu, 2008; Kavussanu & Boardley, 2012). Research evidence indicates that while playing sport, athletes engage in a variety of antisocial behaviors, such as trying to injure their opponents, cheating, and arguing with officials (e.g., Kavussanu, Seal, & Phillips, 2006; Shields, Bredemeier, LaVoi, & Power, 2005), as well as prosocial behaviors, such as helping other players off the floor, helping injured players, and supporting or encouraging their teammates (Kavussanu & Boardley, 2009). Despite our increased awareness of the frequency of moral behavior in sport, we know little about athletes’ behavior outside this context. The present research was designed to shed light on this issue.

Moral Reasoning in Sport Versus Daily Life

In their seminal study, Bredemeier and Shields (1984) used Haan’s (1978) model of moral development to examine whether sport has its own morality. At the heart of this model is the construct of moral balance, which refers to an interpersonal agreement about rights and obligations; when individuals are in moral balance, they agree about what should or should not be done (Shields & Bredemeier, 1995). When people are faced with moral dilemmas (e.g., an athlete must decide whether to obey the coach who has asked him/her to cheat), they attempt to construct moral balance. The manner in which they do this reflects their level of moral development, and the criteria they use in this process are known as moral reasoning. Five levels, that make up three phases, of moral development have been described (Haan, 1978): Levels 1 and 2 form the assimilation phase in which the individual gives preference to the needs of the self in constructing moral balance; Levels 3 and 4 form the accommodation phase, where people give preference to the needs of others; and Level 5 corresponds to the equilibration phase, where people consider equally the needs and interests of all parties.

Bredemeier and Shields (1984) investigated whether individuals’ moral reasoning varies when they respond to moral dilemmas set in sport compared with daily life. Male and female high school and college basketball players and nonathletes, and college swimmers, participated in an interview, which included two moral dilemmas set in sport and two moral dilemmas set in daily life. Moral reasoning scores were assigned to responses to each dilemma, based on the most prevalent moral reasoning levels employed to resolve the dilemma. Each participant received one overall sport score and one overall daily life score. Results showed that sport reasoning was significantly lower (i.e., less mature) than life reasoning.

In a subsample that included the basketball players and nonathletes, the reasoning used to resolve sport and life dilemmas was compared within each moral level (Bredemeier & Shields, 1986a). At Level 2 (assimilation...
phase), there was a higher percentage of sport than life reasoning, whereas at Levels 3, 4, and 5 (accommodation and equilibration phases) there was a lower percentage of sport than life reasoning. Based on these findings, as well as content analyses of the moral interviews, Bredemeier and Shields (1986a, 1986b) introduced the concept of “bracketed morality” to refer to the partial adoption of assimilative patterns of moral exchange in sport. In their view, sport encourages the temporary, partial adoption of assimilative moral reasoning; in sport, the morality that is appropriate in everyday life is partially suspended and egocentrism is viewed as appropriate.

A limitation of this research is that the moral dilemmas used to assess sport and life reasoning referred to different moral issues. Specifically, the two life dilemmas were about a middle-aged married man, who was involved with his young secretary, and about making a decision regarding whether to keep a promise and return some money to the protagonist, who needed it to aid his hungry kin. In contrast, the two sport dilemmas were about a football player, who was instructed by his coach to try to injure an opposing player, and a basketball player, who had to decide whether to help an endangered opponent who had been playing dirty (Bredemeier & Shields, 1986a). Importantly, both sport dilemmas included elements that allowed justification of unethical behavior: First, a football player was asked by an authority figure to act immorally, and second, the opponent who was playing dirty may not deserve to be helped. As the two life dilemmas did not include similar elements, it is not known whether the lower moral reasoning observed in sport compared with daily life was due to the different moral issues raised in the sport context or due to features specific to that context.

This limitation was rectified in subsequent work (Bredemeier, 1994, 1995), which investigated moral reasoning in sport versus daily life in summer sports camp children, who were 10–13 years old. In this research, one pair of life and sport dilemmas was about girls forced to choose between being honest and keeping a promise to a friend; and a second was about boys faced with a decision regarding whether to commit a potentially injurious act against another boy perceived to be acting unfairly. The results showed that only the 12-to-13 year olds displayed lower moral reasoning in sport than daily life. However, such differences have not been demonstrated unequivocally in adolescent and adult athletes.

Although mean differences between sport and life reasoning have been revealed in past work (e.g., Bredemeier, 1995), the consistency of moral reasoning between sport and daily life has not been fully explored. Specifically, in basketball players and nonathletes, 24% of sport reasoning was classified as assimilative, 75% was accommodative, and 1% was equilibrative (Bredemeier & Shields, 1986a). The respective percentages for life reasoning were 13%, 84%, and 3%. Thus, in both contexts the majority of moral reasoning (75% and 84% respectively) was accommodative. In the study of sports camp children (Bredemeier, 1995), sport and life reasoning were very strongly related, with correlation coefficients ranging from .70 to .90. These findings indicate high consistency in moral reasoning between sport and daily life.

In sum, the concept of bracketed morality has received some research attention (e.g., Bredemeier, 1994, 1995; Bredemeier & Shields, 1986a, 1986b). However, most studies have examined differences in moral reasoning, or how participants think about moral issues in sport and daily life. The need exists to understand whether bracketed morality in sport extends to behavior, as it is behavior that we ultimately wish to understand.

Moral Behavior in Sport

A theory that focuses on moral behavior is the social cognitive theory of moral thought and action (Bandura, 1991). According to this theory, through the course of socialization individuals develop moral standards from a variety of influences (e.g., observation of the behavior of siblings, peers, parents, and other adults), and these moral standards regulate behavior through evaluative self-reactions. Thus, people do things that will give them satisfaction by acting in ways that match their moral standards, and refrain from behaving in ways that would bring self-disapproval (i.e., when violating their moral standards). Bandura (1991) has highlighted the importance of focusing on moral behavior because it has consequences for others regardless of people’s reasons for their behavior.

Bandura (1999) has also distinguished between proactive morality, which is the power to behave humanely, and inhibitive morality, which is the power to refrain from behaving inhumanely. These two dimensions of morality have been studied as prosocial and antisocial behavior in the context of sport (see Kavussanu, 2008). Prosocial behavior is behavior intended to help or benefit another (Eisenberg & Fabes, 1998), for example helping an opponent off the floor, while antisocial behavior is behavior intended to harm or disadvantage another (Sage, Kavussanu, & Duda, 2006), for example, trying to injure an opponent, and cheating. These behaviors are morally relevant because they can have consequences for the recipient’s well-being (Kavussanu & Boardley, 2012). Examining both prosocial and antisocial behavior provides a more complete understanding of the moral conduct that takes place in sport.

Although much research on sport morality has focused on behavior directed at opponents (see Kavussanu, 2008), prosocial and antisocial behaviors can also be directed at teammates. Research in soccer players has revealed that behaviors vary depending on the recipient. Specifically, a range of physical (e.g., physical intimidation) and verbal (e.g., winding up) antisocial behaviors were recorded toward opponents, but only verbal acts (e.g., criticism) were observed toward teammates during a soccer match (Kavussanu et al., 2006; Kavussanu, Stamp, Slade, & Ring, 2009); with regard to prosocial behavior, players were observed to congratulate and encourage their teammates and help their opponents off the floor. Kavussanu and Boardley (2009) also identified
different behaviors for opponents and teammates, underlining the importance of distinguishing between the two sets of behaviors.

The Present Research

Although moral reasoning in sport differs from that in daily life, little is known about athletes’ behavior outside the sport context. The purpose of this research was to investigate consistency in athletes’ prosocial and antisocial behavior in sport and university. In sport, we examined behavior toward one’s teammates and opponents, whereas at university we investigated behavior toward other students. We used university as the comparative context because in that context individuals have the opportunity to interact with peers; thus, prosocial and antisocial behaviors toward one’s peers at university can be compared with the respective behaviors in sport. In addition, previous work has shown that divergence in moral reasoning between sport and daily life is greatest in college students (see Bredemeier, 1995).

We investigated two types of behavioral consistency across contexts. The first is consistency of individual differences, that is, the extent to which individuals maintain the same relative position within the group across contexts (see Schutz, 1998). If the behavior of all participants varies as they move from the sport context to the university context (and vice versa) in the same direction and to the same degree, this type of consistency will be high. Asendorpf (1992, cited in Schutz, 1998) refers to it as the “absence of interindividual differences in intraindividual change” (p. 104). This type of consistency is typically examined using correlation coefficients of repeated measures (see Funder & Colvin, 1991; Schutz, 1998). Information on interindividual consistency across contexts could enhance our understanding of the predictability of moral behavior across contexts. We expected at least modest levels of interindividual consistency in moral behavior across the two contexts based on research on moral reasoning (e.g., Bredemeier, 1995), and evidence that sport aggression has been positively associated with life aggression in athletes from a variety of sports (Keeler, 2000).

Although individuals could maintain a high degree of interindividual consistency as they move from one context to the other, their behavior could vary markedly across contexts (see Funder & Colvin, 1991). For example, characteristics specific to the sport context may lead most participants to display higher levels of prosocial behavior toward their teammates in sport than toward other students at university. Thus, we also examined mean differences (or consistency of means) in behavior between the two contexts. We expected more antisocial and less prosocial behavior toward opponents in sport than toward other students at university. This is because acting prosocially toward teammates (e.g., encouraging them) is conducive to achieving the team’s goals, and acting antisocially (e.g., verbally abusing a teammate) may interfere with these goals (Kavussanu & Boardley, 2009). A team member should be motivated to act toward teammates in a manner that would facilitate team success because they are part of that team; such motives are unlikely to exist in one’s interactions with other students, because they do not typically involve common striving toward the same goal.

To investigate these issues, we conducted two studies with diverse samples of male and female athletes recruited from high-contact (e.g., American football) and medium-contact (e.g., basketball) sports, that is, sports that vary in terms of the relative frequency and intensity of physical contact (Bredemeier, Weiss, Shields, & Cooper, 1986). We also investigated whether context differences in moral behavior were moderated by gender and level of contact. Males are known to display more antisocial behavior than females (e.g., Kavussanu et al., 2009), and athletes from high-contact sports are more likely than those from medium-contact sports to judge aggressive behaviors as acceptable (Tucker & Parks, 2001). Thus, context differences in antisocial behavior may be larger for males and high-contact-sport athletes.

The issues described above were examined in Studies 1 and 2, with two independent samples, to determine whether Study 1 findings would be replicated in Study 2. In addition, we were interested in explaining potential context differences in behavior. Therefore, in Study 2, we also examined potential mediators of the effects of context on moral behavior.

Study 1

Method

Participants

Participants were male (n = 176) and female (n = 155) athletes recruited from two British universities, one from the East Midlands and one from the North of England. Their average age was 20.11 years (SD = 1.65 years), and they were members of a university team in one of the following sports: rugby (25%), soccer (20%), hockey (17%), American football (11%), basketball (11%), netball (9%), or lacrosse (7%). Participants played in the university first (54%), second (22%), third (11%), or fourth (13%) teams. At the time of data collection, the highest level at which they were competing was university (47%), club (22%), regional/county (11%), national (9%), or international (11%), and they had been competing at their main sport for an average of 7.76 (SD = 4.21) years. Finally, their current year of study was first (37%), second (29%), third (26%), or postgraduate (8%).

Procedure

After obtaining approval from the local Research Ethics Committee and permission from the athletic bodies and head coaches of both universities, student athletes were
approached by one of the investigators during the final month of their sporting season either before or after a training session. Participants were informed of the study’s aims, that participation was voluntary, honesty in responses was vital, and data would be kept strictly confidential and would be used only for research purposes. After signing an informed consent form, participants completed the measures described below. The questionnaire consisted of two parts. One part asked participants to think about their experiences in sport, and the other part asked them to think about their experiences at university.

Measures

The 20-item Prosocial and Antisocial Behavior in Sport Scale (PABSS; Kavussanu & Boardley, 2009) was used to assess prosocial and antisocial behavior in sport. The PABSS consists of four subscales that measure prosocial behavior toward teammates and opponents and antisocial behavior toward teammates and opponents. Participants were presented with 20 items describing prosocial and antisocial behaviors in sport. They were asked to think about their experiences when playing their team sport this season and indicate how often they had engaged in each behavior. Responses were made on a scale anchored by 1 (*never*) and 5 (*very often*).

Past research has provided evidence for the internal reliability of the PABSS, as well as for its convergent, discriminant, and factorial validity (Kavussanu & Boardley, 2009; Kavussanu, Stanger, & Boardley, 2013). In this research, scale reliabilities for all variables were estimated by computing the composite reliability coefficients (see Raykov, 1997); this coefficient does not underestimate scale reliability, unlike Cronbach’s alpha, which represents the lower bound to the reliability of a scale (see Raykov, 1997; Sijtsma, 2009). These coefficients were very good (range = .82–.93).

An adapted version of the PABSS was used to measure prosocial and antisocial behavior at university. The term *students* replaced *opponents* and *teammates* in all university items as, unlike sport, at university there are no formal opponents and teammates. Other slight modifications were made to ensure the items were relevant to the university context. All original and adapted items can be seen in Table 1. Participants were presented with the adapted items describing prosocial and antisocial behaviors at university. They were asked to think about their experiences with other students and indicate how often they had engaged in these behaviors.

| Table 1 Antisocial and Prosocial Behavior Items and Descriptive Statistics in Sport and University: Study 1 |
|---|-----------------|-----------------|
| **Antisocial Opponent/Student Behavior** | **Sport** | **University** |
| 1. Criticized (an opponent / a student) | 2.90 1.00 | 2.30 0.97 |
| 2. Deliberately (fouled an opponent / hurt a student) | 2.56 1.13 | 1.44 0.84 |
| 3. Retaliated after (a bad foul / being hurt by a student) | 2.52 1.08 | 1.96 1.15 |
| 4. Tried to wind up (an opponent / a student) | 3.06 1.27 | 2.44 1.20 |
| 5. Tried to injure (an opponent / a student) | 1.88 1.14 | 1.42 0.80 |
| 6. Intentionally distracted (an opponent / a student during a class) | 2.64 1.22 | 2.37 1.23 |
| 7. Intentionally broke the rules of the (game / university) | 2.33 1.11 | 1.65 1.00 |
| 8. Physically intimidated (an opponent / a student) | 2.63 1.22 | 1.62 0.99 |
| **Antisocial Teammate/Student Behavior** | **Sport** | **University** |
| 1. Argued with a (teammate / student) | 2.08 1.00 | 2.19 1.03 |
| 2. Verbally abused a (teammate / student) | 1.75 0.97 | 1.92 1.08 |
| 3. Criticized a teammate / Undermined a student | 2.19 0.87 | 1.93 1.01 |
| 4. Swore at a (teammate / student) | 2.27 1.24 | 2.45 1.23 |
| 5. Showed frustration at a (teammate’s poor play / student’s poor performance) | 2.54 0.99 | 1.95 1.04 |
| **Prosocial Opponent/Student Behavior** | **Sport** | **University** |
| 1. Helped (an opponent off the floor / a student in need) | 3.10 1.14 | 3.38 0.84 |
| 2. Asked to stop play when opponent was injured / Sought help for student who was hurt | 2.72 1.09 | 2.51 1.14 |
| 3. Helped (an injured opponent / a student who was hurt) | 2.89 0.99 | 2.76 1.21 |
| **Prosocial Teammate/Student Behavior** | **Sport** | **University** |
| 1. Gave positive feedback to a (teammate / student) | 4.24 0.73 | 3.56 1.00 |
| 2. Encouraged a (teammate / student) | 4.42 0.75 | 3.65 0.93 |
| 3. Gave constructive feedback to a (teammate / student) | 3.70 0.90 | 3.43 1.02 |
| 4. Congratulated a (teammate / student) for good (play / work) | 4.47 0.72 | 3.67 0.97 |
this academic year. Responses were made on a scale anchored by 1 (never) and 5 (very often).

Confirmatory factor analysis on the university version of the scale, specifying the four-factor structure of the PABSS, with the robust least squares method and treating the data as categorical, showed an acceptable fit to the data, \(\chi^2 (164) = 745.68, p < .05, \text{CFI} = .940, \text{RMSEA} = .085; \) factor loadings ranged from .51 to .87 (\(\text{M} = .74 \)). A very good fit is achieved when CFI values are close to 0.95, the SRMR is close to 0.08, and the RMSEA is close to 0.06 (Hu & Bentler, 1999). The composite reliability coefficients of the adapted scale were very good (range = .88–.93).

As indicated above, the original PABSS measures prosocial and antisocial behavior toward teammates and opponents, whereas the adapted scale referred to students. To ensure there is clarity in the behaviors that we examined, when describing and discussing our findings, we have used the terms teammate/student and opponent/student to refer to the behaviors examined in the two contexts. Thus, prosocial teammate/student behavior is prosocial behavior directed toward teammates in sport and students at university, antisocial opponent/student behavior is antisocial behavior directed toward opponents in sport and students at university, and so on.

Results

We examined interindividual consistency across contexts by computing correlations between behaviors in the two contexts. To account for error of measurement, we computed disattenuated correlations using Spearman’s (1904) formula. We found medium-to-large correlations for antisocial opponent/student behavior (\(r = .57, p < .001 \)), antisocial teammate/student behavior (\(r = .60, p < .001 \)), prosocial opponent/student behavior (\(r = .41, p < .001 \)), and prosocial teammate/student behavior (\(r = .40, p < .001 \)). The respective zero-order Pearson’s correlation coefficients were as follows: \(r = .53, p < .001, \) for antisocial opponent/student; \(r = .54, p < .001, \) for antisocial teammate/student; \(r = .35, p < .001, \) for prosocial opponent/student; and \(r = .34, p < .001, \) for prosocial teammate/student behavior.

To determine whether behaviors differed between the two contexts and whether these differences were moderated by gender and level of contact (i.e., sport type), first we classified rugby, American football, and men’s lacrosse as high-contact sports, and soccer, hockey, basketball, netball, and women’s lacrosse as medium-contact sports (see Bredemeier et al., 1986). A 2 Context (sport, university) \(\times \) 2 Gender (male, female) \(\times \) 2 Contact Level (high, medium) repeated-measures multivariate analysis

Table 2 Descriptive Statistics and ANOVA Results for Context, Gender, and Contact Level: Study 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Context</th>
<th>Sport</th>
<th>University</th>
<th>M</th>
<th>SE</th>
<th>M</th>
<th>SE</th>
<th>F(1, 327)</th>
<th>(\eta^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB opponent/student</td>
<td></td>
<td>2.57</td>
<td>1.88</td>
<td>0.05</td>
<td>0.05</td>
<td>176.56***</td>
<td>.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB teammate/student</td>
<td></td>
<td>2.15</td>
<td>2.06</td>
<td>0.05</td>
<td>0.05</td>
<td>2.86</td>
<td>.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB opponent/student</td>
<td></td>
<td>2.89</td>
<td>2.82</td>
<td>0.06</td>
<td>0.06</td>
<td>1.16</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB teammate/student</td>
<td></td>
<td>4.18</td>
<td>3.49</td>
<td>0.04</td>
<td>0.05</td>
<td>167.22***</td>
<td>.34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Gender</th>
<th>Male</th>
<th>Female</th>
<th>M</th>
<th>SE</th>
<th>M</th>
<th>SE</th>
<th>F(1, 327)</th>
<th>(\eta^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB opponent/student</td>
<td></td>
<td>2.46</td>
<td>2.00</td>
<td>0.05</td>
<td>0.07</td>
<td>29.23***</td>
<td>.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB teammate/student</td>
<td></td>
<td>2.41</td>
<td>1.79</td>
<td>0.05</td>
<td>0.07</td>
<td>52.29***</td>
<td>.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB opponent/student</td>
<td></td>
<td>2.82</td>
<td>2.90</td>
<td>0.05</td>
<td>0.08</td>
<td>0.75</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB teammate/student</td>
<td></td>
<td>3.82</td>
<td>3.86</td>
<td>0.04</td>
<td>0.06</td>
<td>0.25</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Contact Level</th>
<th>High</th>
<th>Medium</th>
<th>M</th>
<th>SE</th>
<th>M</th>
<th>SE</th>
<th>F(1, 327)</th>
<th>(\eta^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB opponent/student</td>
<td></td>
<td>2.29</td>
<td>2.16</td>
<td>0.07</td>
<td>0.05</td>
<td>2.24</td>
<td>.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB teammate/student</td>
<td></td>
<td>2.10</td>
<td>2.10</td>
<td>0.07</td>
<td>0.05</td>
<td>0.00</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB opponent/student</td>
<td></td>
<td>2.80</td>
<td>2.93</td>
<td>0.08</td>
<td>0.05</td>
<td>2.22</td>
<td>.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB teammate/student</td>
<td></td>
<td>3.77</td>
<td>3.91</td>
<td>0.06</td>
<td>0.04</td>
<td>3.58</td>
<td>.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note. AB = antisocial behavior; PB = prosocial behavior. Possible range is 1–5 for all variables.

***p < .001.
of variance (MANOVA) on the four behaviors revealed significant multivariate effects for context, \(F(4, 324) = 93.08, p < .001, \eta^2_p = .54 \); gender, \(F(4, 324) = 13.86, p < .001, \eta^2_p = .15 \); and contact level, \(F(4, 324) = 2.54, p < .02, \eta^2_p = .03 \). Follow-up ANOVAs (reported in Table 2) indicated that participants reported higher antisocial behavior toward their opponents as well as higher prosocial behavior toward their teammates in sport than toward other students at university. In addition, compared with females, males reported higher antisocial behavior toward both their opponents and teammates in sport than toward other students at university.

Finally, a Context × Contact Level interaction emerged for antisocial opponent/student behavior, \(F(1, 327) = 4.22, p < .05, \eta^2 = .01 \). To explore this interaction, which is depicted in Figure 1, we conducted tests of simple effects. These tests indicated significant differences in this antisocial behavior between sport and university for both high- \(p < .001 \) and medium- \(p < .001 \) contact sports. There was also a significant difference in antisocial opponent/student behavior between high- and medium-contact sports within the sport context \((p = .023) \), but not within the university context.

Study 2

In Study 2, we aimed to determine whether Study 1 findings would be replicated in an independent sample and attempted to explain context differences in moral behavior. To this end, we examined potential mediators three variables that have been consistently associated with moral behavior in sport (Kavussanu, 2008): moral disengagement, ego orientation, and task orientation.

Moral disengagement refers to a set of psychological mechanisms that individuals use to minimize negative emotional reactions—such as guilt—when engaging in harmful conduct (Bandura, 1991). The mechanisms act by mentally reconstruing harmful behaviors into benign ones, minimizing personal accountability for harmful behavior, misrepresenting the injurious effects that result from such behavior, and blaming the nature or actions of the victim. Moral disengagement has been positively linked to antisocial behavior in both sport (e.g., Bradley & Kavussanu, 2009; Hodge & Lonsdale, 2011) and nonsport contexts (e.g., Bandura, Barbaranelli, Caprara, & Pastorelli, 1996).

Although opportunities for moral disengagement also exist in one’s interactions with other students at university, in sport, certain conditions may facilitate moral disengagement. For example, in the pursuit of victory, coaches may ask players to cheat or injure their opponents, and players may also receive pressure from their teammates to do so. It may be easier to morally disengage in sport because responsibility for one’s inappropriate actions can be displaced onto others. Although students have classmates and professors, these individuals are not expected to pressure students to cheat or injure other students at university. Thus, moral responsibility for one’s actions is unlikely to be displaced on classmates and professors, leading to lower moral disengagement at university compared with sport. Indeed, in a study that examined aggression toward other students in secondary schools, participants reported very low levels of moral disengagement (Barchia & Bussey, 2011). Thus, potential context differences in moral disengagement may help explain context differences in antisocial behavior.

Ego orientation, which is the tendency to define success and evaluate competence using other-referenced criteria (Nicholls, 1989), has also been positively associated with antisocial sport behavior in numerous studies (see Kavussanu, 2008) and may differ between the two contexts. One condition that promotes ego orientation is competition (Nicholls, 1989), which is integral to sport, as it is one of its defining features (Duda & Nicholls, 1992). Perhaps it is not surprising that extensive participation in sport has been positively linked to ego orientation (Kavussanu & Ntoumanis, 2003). Some recent evidence also suggests that ego orientation is sensitive to contextual variation. Specifically, in tennis players as well as in a variety of individual and team-sport athletes, ego orientation was higher in the specific context of competition than in training (van de Pol & Kavussanu, 2011, 2012) suggesting that ego orientation could change as athletes move from one context to another. Informal competition is also present in other parts of university life, such as the classroom, but it is not a defining feature of this context: Students do not formally compete against each other when they attend lectures, and their performance is not evaluated relative to other students (in the UK where this study was conducted). Thus, participants may show context differences in ego orientation, which may help explain context differences in their antisocial behavior.

Finally, we examined task orientation, which is the tendency to define success and evaluate competence using self-referenced criteria. This variable has been positively associated with prosocial behavior in both sport
(e.g., Sage & Kavussanu, 2007; Kavussanu & Boardley, 2009) and school (e.g., Wentzel, 1998). Although there is no evidence to suggest that task orientation should vary between the two contexts, for exploratory purposes we examined whether it could explain context differences in prosocial behavior.

In sum, as well as determining whether Study 1 findings were replicated in an independent sample, in Study 2 we investigated potential mediators of the effects of context on prosocial and antisocial behavior. We hypothesized that participants would report higher moral disengagement and ego orientation in sport than university, which would explain context differences in behavior. We formed no hypotheses about task orientation due to the lack of relevant supporting evidence for context differences in this variable.

Method

Participants

Participants were male (n = 210) and female (n = 162) student athletes recruited from a British university in the West Midlands. Their average age was 19.82 years (SD = 1.53 years). All students were members of a university team playing rugby (15%), soccer (18%), hockey (42%), American football (13%), basketball (3%), or netball (9%). Most of them played in the university first (40%), second (27%), third (12%), or fourth (3%) team, whereas a small proportion (18%) were medical school students, who competed in their own leagues (the level is equivalent to the university second or third teams). At the time of data collection, the highest ever standard at which they may have played the university second or third teams. At the time of data collection, the highest ever standard at which participants had played their main sport was university (80%), regional (5%), national (9%), and international (6%), and they had been competing in their respective sport for an average of 7.40 (SD = 4.55) years. Finally, their year of study was first (34%), second (33%), third (24%), or graduate (9%).

Procedure

The procedure was the same as that used in Study 1, with the exception that the data were collected by two research assistants. Data collection started 2 months into the season/term and took place over a 3-month period.

Measures

Prosocial and Antisocial Behavior. Similar to Study 1, we measured behavior in the two contexts with the PABSS (Kavussanu & Boardley, 2009) and its adapted version. The composite reliability coefficients for the PABSS subscales were very good (range = .84-.94). In the university version of the scale, CFA specifying the four-factor structure of the PABSS, with the robust least squares method and treating the data as categorical, showed an acceptable fit to the data, χ² (164) = 565.13 (p < .05), CFI = .915, RMSEA = .081, SRMR = .079. Factor loadings ranged from .42 to .82 (M = .64). The composite reliability coefficients of the four subscales of the university version of the scale were very good (range = .82-.89).

Moral Disengagement. The eight-item Moral Disengagement in Sport Scale–Short (Boardley & Kavussanu, 2008) was used to measure moral disengagement in sport. Participants were asked to read a number of statements describing thoughts and feelings players may have about competitive sport and indicate their level of agreement on a 7-point scale anchored by 1 (strongly disagree) and 7 (strongly agree). An example item is “Insults among players do not really hurt anyone.” The scale has shown very good internal consistency, with alpha coefficients ranging from .80 to .85, and evidence for its factorial, convergent, and concurrent validity has been provided (Boardley & Kavussanu, 2008). In this study, the composite reliability coefficient was .91.

An abbreviated version of the Moral Disengagement Scale (Bandura et al., 1996) was used to assess moral disengagement at university. We selected one item for each of the eight moral disengagement mechanisms and adapted the items slightly to fit the university context. The items were selected based on (a) their similarity to the moral disengagement in sport (short) scale and (b) their relevance to the university context. The items were as follows: insults among students do not hurt anyone; it is alright to lie to keep your friends out of trouble; slapping and shoving someone is just a way of joking; it is okay to insult a fellow student because hitting him/her is worse; it is unfair to blame a student who had only a small part in the harm caused by a group; students cannot be blamed for misbehaving if their friends pressured them to do it; some students deserve to be treated like animals; and students who are mistreated usually do things that deserve it. Participants were asked to read a number of statements describing thoughts and feelings that students may have about university life and indicate their level of agreement on a 7-point scale anchored by 1 (strongly disagree) and 7 (strongly agree). The composite reliability coefficient of this scale was .91.

We conducted CFA using the robust maximum likelihood method to examine the factorial structure of this abbreviated scale; the model had a satisfactory fit to the data, χ² (18) = 79.84, p < .001, CFI = .909, RMSEA = .096, SRMR = .051. Factor loadings ranged from .36 to .77 (M = .58). This model incorporated correlated errors between the following two pairs of items: (a) “it is alright to lie to keep your friends out of trouble” and “slapping and shoving someone is just a way of joking” and (b) “some students deserve to be treated like animals” and “students who are mistreated usually do things that deserve it.”

Goal Orientation. Task and ego goal orientations in sport were measured using the Perception of Success Questionnaire (POSQ; Roberts, Treasure, & Balague, 1998). The stem “When playing my main sport I feel most successful when . . .” was used followed by two six-item
subscales measuring task (e.g., “I show clear personal improvement”) and ego (e.g., “I beat other people”) orientations. Participants responded on a 5-point scale anchored by 1 (strongly disagree) and 5 (strongly agree). The POSQ has shown high internal consistency with alpha coefficients of .88 for each subscale (Roberts et al., 1998). In this study, the composite reliability coefficients were .90 and .92 for task and ego orientations, respectively.

An adapted version of the scale was used to assess task and ego goal orientations at university and was focused specifically on university classes because goal orientation is an achievement variable. The stem “In my university classes, I feel most successful when . . .” was used followed by the same two six-item subscales measuring task and ego orientations in sport. Participants responded on a 5-point scale anchored by 1 (strongly disagree) and 5 (strongly agree). A CFA on the two-factor model with the robust least squares method and treating the data as categorical showed a fairly good fit, χ² (53) = 295.07, p < .001, CFI = .948, RMSEA = .111, SRMR = .078. Factor loadings ranged from .66 to .90 (M = .80). The composite reliability coefficients were .94 and .94 for task and ego orientation, respectively.

Results

Interindividual Consistency and Mean Differences Across Contexts

Correlations were computed between the measures taken in the two contexts to examine interindividual consistency of behavior across contexts. Disattenuated correlations were strong for antisocial opponent/student, r = .53, p < .01; antisocial teammate/student, r = .59, p < .01; prosocial opponent/student, r = .55, p < .01; and prosocial teammate/student, r = .53, p < .01, behaviors. The respective zero-order correlations were r = .47, p < .01, for antisocial opponent/student; r = .51, p < .01, for antisocial teammate/student; r = .48, p < .01, for prosocial opponent/student; and r = .46, p < .01, for prosocial teammate/student behavior.

To examine context differences in behaviors and whether these were moderated by gender and contact level, we conducted a 2 Context (sport, university) × 2 Gender (male, female) × 2 Contact Level (high, medium) repeated-measures MANOVA. This analysis showed significant multivariate effects for context, F(4, 365) = 47.20, p < .001, η²p = .34, and gender, F(4, 365) = 10.54,
$p < .001$, $\eta^2_p = .10$, but not contact level, $F(4, 365) = 2.91$, $p = .09$, $\eta^2_p = .02$. It also revealed interaction effects between context and gender, $F(4, 365) = 4.71$, $p < .001$, $\eta^2_p = .05$, and context and contact level, $F(4, 365) = 4.30$, $p < .002$, $\eta^2_p = .05$. Follow-up ANOVAs showed the following: main effects for context, gender, and contact level (see Table 3), and interaction effects between context and gender for antisocial opponent/student behavior, $F(1, 368) = 6.74$, $p < .01$, $\eta^2 = .02$, and prosocial teammate/student behavior, $F(1, 368) = 9.50$, $p < .002$, $\eta^2 = .03$, as well as between context and contact level for prosocial opponent/student behavior, $F(1, 368) = 14.55$, $p < .001$, $\eta^2 = .04$. Similar to Study 1, we explored these interactions by conducting, for each variable, tests of simple effects.

The interaction between context and gender for antisocial opponent/student behavior can be seen in Figure 2A. Tests of simple effects showed that this behavior was higher in sport than university in both males ($p < .001$) and females ($p = .001$), and higher in males than females in sport ($p = .037$), but not university.

The interaction between context and gender for prosocial teammate/student behavior can be seen in Figure 2B. This behavior was higher in sport than university in both males ($p < .001$) and females ($p = .02$), and higher in females than males at university ($p < .01$), but not sport. Finally, Figure 3 presents the interaction between context and contact level for prosocial opponent/student behavior. This behavior was lower in sport than university in both high- ($p < .001$) and medium- ($p < .001$) contact sports, and higher in high-contact than medium-contact sports at university ($p < .01$) but not sport.

Mediation Analysis

The third study purpose was to determine whether moral disengagement and goal orientation mediated the effects of context on moral behavior and was examined using within-subjects mediation (Judd, Kenny, & McClelland, 2001). We also investigated moderation because this is an integral part of this analysis. For a variable to be examined as mediator, three conditions need to be met (Judd et al., 2001). First, the outcome variable must differ between the two contexts. This was the case for three variables: antisocial opponent/student behavior, which was more frequent in sport ($M = 2.26$, $SD = 0.84$) than university ($M = 1.82$, $SD = 0.54$), $t(371) = 11.29$, $p < .001$; prosocial teammate/student behavior, which was also more frequent in sport ($M = 4.03$, $SD = 0.67$) than university ($M = 3.67$, $SD = 0.76$), $t(371) = 9.44$, $p < .001$; and prosocial opponent/student behavior, which was less frequent in sport ($M = 2.55$, $SD = 0.95$) than university ($M = 2.97$, $SD = 0.92$), $t(371) = 8.44$, $p < .001$.

The second condition is that the mediator must differ between contexts (see Judd et al., 2001). This was the case for moral disengagement, which was higher in sport ($M = 3.43$, $SD = 1.09$) than university ($M = 3.12$, $SD = 0.97$), $t(371) = 6.51$, $p < .001$, and ego orientation, which was also higher in sport ($M = 3.91$, $SD = 0.72$).
than university (M = 3.73, SD = 0.80), t(371) = 5.12, p < .001; task orientation did not differ between sport (M = 4.42, SD = 0.49) and university (M = 4.39, SD = 0.61), t(371) = 0.98, p = .33. The third condition is that the mediator must be related to the outcome variable. Both moral disengagement and ego orientation were linked to antisocial opponent/student behavior in both sport (moral disengagement: r = .56, p < .001; ego orientation: r = .25, p < .001) and university (moral disengagement: r = .48, p < .001; ego orientation: r = .16, p < .002) contexts. However, they were unrelated to prosocial opponent/student and teammate/student behaviors.

In sum, the three prerequisites for mediation were met only for antisocial opponent/student behavior in relation to moral disengagement and ego orientation. Therefore, in the following analyses, we only examined whether context differences in moral disengagement and ego orientation mediated context differences in this behavior. For simplicity, in the remainder of this section, we refer to antisocial/opponent student behavior merely as antisocial behavior.

Next, as described by Judd et al. (2001), we computed three new variables by subtracting participants’ scores on antisocial behavior, moral disengagement, and ego orientation in the university context from their respective scores on these variables in sport. These new variables, termed difference scores, represented the degree to which the two contexts differed in antisocial behavior, moral disengagement, and ego orientation and were used in regression analyses to test mediation. Specifically, we examined whether context differences in antisocial behavior could be explained by context differences in moral disengagement and ego orientation. We also computed two additional variables, termed sum scores by summing participants’ scores on moral disengagement and ego orientation at university with their respective scores in sport. These sum scores were mean centered (by subtracting the mean from each score) and were used to examine moderation (Judd et al., 2001), that is, the extent to which the context difference in antisocial behavior varied depending on the level of moral disengagement and ego orientation.

In the second regression, we tested whether ego orientation mediated and moderated the context difference in antisocial behavior. We entered the ego orientation difference and sum scores as predictors and the context difference in antisocial behavior as the outcome. The increase in ego orientation from university to sport predicted the associated increase in antisocial behavior, B = 0.28, 95% CI [0.17, 0.40], t(370) = 5.06, p < .001. The intercept remained significantly different from zero, B = 0.39, 95% CI [0.31, 0.47], t(370) = 9.94, p < .001, providing evidence for moderation. Thus, participants high in moral disengagement differed more (than participants low in moral disengagement) in antisocial behavior toward opponents in sport than toward students at university.

In the second regression, we tested whether ego orientation mediated and moderated the context difference in antisocial behavior. We entered the ego orientation difference and sum scores as predictors and the context difference in antisocial behavior as the outcome. The increase in ego orientation from university to sport predicted the associated increase in antisocial behavior, B = 0.28, 95% CI [0.17, 0.40], t(370) = 5.06, p < .001. The intercept remained significantly different from zero, B = 0.39, 95% CI [0.31, 0.47], t(370) = 9.94, p < .001, indicating that ego orientation also partially mediated the effect of context on antisocial behavior. The mean-centered sum score of ego orientation also did not predict the difference in antisocial behavior, providing no evidence for moderation.

Discussion

The notion that a bracketed morality exists in sport is one that has been around for more than two decades. Although empirical evidence for this idea has been provided in past research, this work has focused mainly on athletes’ moral reasoning (Bredemeier, 1995; Bredemeier & Shields, 1984, 1986b). To date, no study has empirically investigated consistency in athletes’ moral behavior between contexts and what factors might explain potential context differences in such behavior. In the present research, we attempted to fill this gap in the literature.

Interindividual Consistency

The first type of consistency that we examined was consistency of individual differences across contexts. In both studies, we found medium-to-large correlations between the behaviors reported in the two contexts, suggesting that considerable interindividual consistency across contexts exists in moral behavior, particularly antisocial behavior. Thus, participants who reported higher (or lower) prosocial or antisocial behavior in sport also tended to report higher (or lower) frequency of these behaviors in their interactions with other students at university. This means that the individual differences that are manifested in sport were largely maintained in participants’ interactions with other students at university. These findings suggest that we can predict moral behavior at the university context if we are aware of its frequency in sport and vice versa, and are in line with past research on moral reasoning (Bredemeier, 1995) and aggression (Keeler, 2000).
Context Differences in Moral Behavior

Although our participants showed considerable interindividual consistency across the two contexts, they also displayed significant context differences in three of the four behaviors, as discussed in detail below. Thus, our participants changed their behavior as a function of contextual factors. For example, even though the same participants who reported the most frequent antisocial behavior toward their opponents in sport may also have reported the most frequent antisocial behavior at university, in general, the sport context seems to have elicited higher overall antisocial behavior toward opponents than the university context did toward other students. These seemingly contradictory findings are not uncommon (e.g., Funder & Colvin, 1991). Indeed, people can modify their behavior substantially across contexts, but maintain considerable interindividual consistency, because mean differences and correlations across contexts are statistically independent (Funder & Colvin, 1991).

Antisocial Behavior. A robust finding across the two studies was that the average frequency of antisocial opponent/student behavior differed between the two contexts. Specifically, on average, participants engaged in antisocial behaviors, such as intentionally distracting, physically intimidating, criticizing, and trying to injure someone, more often, when their opponent was another student at university. These results support the concept of bracketed morality (Bredemeier, 1995; Bredemeier & Shields, 1986a, 1986b) and provide the first quantitative evidence to suggest that context differences exist in antisocial behavior of athletes participating in a variety of team sports. However, no differences between the two contexts were revealed in antisocial teammate/student behavior.

Context differences in antisocial opponent/student behavior were larger in males than females in Study 2, with males reporting more frequent antisocial behavior than females toward their opponents in sport, but not toward other students at university; in Study 1, males reported higher antisocial opponent/student behavior than females in both contexts. Gender differences are one of the most reliable findings in sport morality studies (e.g., Bredemeier & Shields, 1986a; Kavussanu et al., 2009); thus, the current findings in sport are in line with previous research. The gender differences within the university context in Study 1 (but not Study 2) may be due to the higher antisocial behavior of Study 1 participants in sport. In Study 1, most athletes reported playing in the first university team as well as a club; thus, overall they were competing at a higher level (than Study 2 participants), a variable that has been positively linked to aggression in sport (e.g., Coulomb-Cabagno & Rasle, 2006). The higher level of competition may have led to higher antisocial behavior toward opponents in sport, and this behavior may have been transferred toward students at university.

Context differences in antisocial opponent/student behavior were also larger in high-contact than medium-contact sports, in Study 1 (but not study 2). Specifically, in Study 1, high-contact-sport athletes reported more frequent antisocial behavior than medium-contact-sport athletes toward their opponents in sport but not toward other students at university. In Study 2, differences in antisocial behavior as a function of contact level were revealed in both contexts. The contact level differences in antisocial sport behavior are consistent with research, in which high-contact-sport athletes were more accepting of aggressive behaviors (Tucker & Parks, 2001) and more likely to judge rule-violating behaviors as legitimate (Silva, 1983) than medium-contact-sport athletes. The contact level discrepancy at the university context (in Study 2) is difficult to explain, but it is worth noting that the difference in this antisocial behavior between the two contact levels was very small ($M = 0.18$, $\eta^2 = .01$).

Prosocial Behavior. A consistent finding across the two studies was that the higher prosocial behavior toward teammates in sport than students at university. Specifically, participants reported giving positive or constructive feedback and congratulating or encouraging their teammates more often than they did other students. This is an interesting finding that indicates that team sport is a context that may facilitate positive social interaction among team members. In sport, team members strive for a common goal and each player’s performance contributes to the team achieving its goal. Research has shown that people act favorably toward members of their group. Merely being categorized randomly into a specific group can elicit a positive bias—reflected in favorable distribution of monetary rewards—toward one’s group (Tajfel, Billig, Bundy, & Flament, 1971). This may explain the higher prosocial behavior reported by the same individuals toward their teammates in sport than toward their fellow students at university. Prosocial behavior was lower toward one’s opponents in sport than other students at university in Study 2. This finding is consistent with an extensive body of literature indicating that people are biased toward individuals who do not belong to their group (e.g., one’s opponents in sport), which leads them to evaluate and act toward them less favorably (e.g., Hewstone, Rubin, & Willis, 2002).

In Study 2, context differences in prosocial teammate/student behavior were affected by gender, such that they were larger for males than females: Males were more prosocial than males toward their fellow students at university, but the two genders did not differ in prosocial behavior toward their teammates in sport. These findings are in line with previous research, which has shown that girls are more prosocial than boys (e.g., Ladd & Proffit, 1996). The lack of gender differences in prosocial teammate behavior in sport is also in line with findings that male and female soccer players do not differ in prosocial sport behavior (Kavussanu et al., 2009). Perhaps being part of a team affects behavior of males so that they become more prosocial toward their teammates, cancelling out the typical gender differences in prosocial behavior observed in nonsport contexts.
Our research was the first to explicitly differentiate between opponents and teammates in investigating bracketed morality in sport. This methodology ensured that all participants had the same person in mind (i.e., either teammate or opponent) when responding, thereby enhancing precision of measurement. Naturally, this distinction was not made in the university context because it was not relevant to that context. Instead, participants were asked to think about their experiences with other students. Thus, there was a clear difference in the target of behavior in the two contexts, and behavior toward teammates and opponents in sport was compared with behavior toward students at university. There is a large body of literature (e.g., Hewstone et al., 2002) indicating that individuals tend to respond differently to others depending on whether these others are members of their own group (the in-group) or members of a different group (the out-group). It may be that the bracketed morality phenomenon is, at least in part, a manifestation of this tendency. Sport is a unique context, where one is typically part of a team (the in-group) competing against others (the out-group). Our differential findings for teammates and opponents highlight the importance of making this distinction when examining bracketed morality in sport.

Explaining Context Differences
Moral disengagement partially mediated the sport–university differences in antisocial opponent/student behavior. That is, participants may have been able to behave antisocially more often toward their opponents in sport because of their higher moral disengagement in that context compared with university. Perhaps certain features of sport, such as the presence of officials to whom participants can displace responsibility, promote moral disengagement. Indeed, athletes frequently refer to officials in their justifications of transgressive behavior (Corrion, Long, Smith, & d’Arripe-Longueville, 2009). It is also possible that the higher frequency of antisocial behavior in sport (compared with university) resulted in higher moral disengagement in that context. Over time, these more frequent antisocial acts may have created the need for moral disengagement to minimize feelings of guilt that could have resulted from antisocial behavior. Indeed, in a recent experiment, individuals’ own dishonest behavior increased their moral disengagement (Shu, Gino, & Bazerman, 2011).

Ego orientation also partially mediated context differences in antisocial opponent/student behavior. Athletes reported higher ego orientation in sport than university. Sport by nature involves competition, in which objective success is other referenced. This seems to also affect subjective evaluations of success, which, in turn, appear to partly explain why athletes behave more antisocially toward their opponents in sport than toward other students at university. In other words, this may occur due to the elevated ego orientation, a variable that has been consistently associated with antisocial sport behavior (e.g., Sage & Kavussanu, 2007). However, it is important to note that both moral disengagement and ego orientation were partial mediators; thus, in future research other variables need to be considered to more fully understand context differences in moral behavior.

Theoretical and Practical Implications
Our findings have some theoretical and practical implications. First, the findings extend game reasoning theory (Bredemeier & Shields, 1986a, 1986b), which suggests that there is contextual specificity in individuals’ moral reasoning. They also have implications for achievement goal theory. In line with previous research (e.g., van de Pol & Kavussanu, 2011, 2012), our results show that ego orientation is sensitive to contextual variation. Our findings also indicate that it is important to investigate behavior toward both teammates and opponents, as context differences varied depending on the recipient. With regard to practical implications, coaches could try to temper athletes’ ego orientation and discourage the use of moral disengagement if they wish to reduce antisocial behavior in sport, particularly in males and high-contact sports. In academic environments, teachers could increase prosocial behavior by adopting teaching methods that promote collaborative learning, which might help create the team environment athletes experience in sport.

Limitations of the Study and Directions for Future Research
Our research revealed interesting findings but also has some limitations that need to be considered when interpreting these findings. First, we measured reported rather than actual behavior. Although all data were collected by research assistants and were anonymous, and research has revealed strong correlations between reported and observed behavior (e.g., Kavussanu et al., 2006), self-reports can be influenced by social desirability. Therefore, future research should examine whether the present findings can be replicated with actual behavior. Second, our data were cross-sectional; thus, we cannot confirm the direction of causality in mediation analysis. That is, even though there was evidence for the mediating role of moral disengagement and ego orientation, antisocial behavior may have led to higher levels of these variables in sport (cf. Shu et al., 2011). The direction of causality needs to be examined in future research using longitudinal, experimental, or quasi-experimental designs.

Third, there was a slight discrepancy in the items used to measure moral disengagement in the two contexts. In sport, we used a sport-specific scale, but at university, we used eight items adapted from a widely used instrument (Bandura et al., 1996). Although the items in the two scales were matched to be as similar as possible, context differences in moral disengagement could be in part attributed to this slight item discrepancy. In the future, researchers should measure moral disengagement using the same items in both contexts. Researchers could also
investigate potential mediators of prosocial behavior. One such candidate is empathy, which refers to the responses of one individual to the observed experiences of another (Davis, 1983) and has been linked to prosocial sport behavior (Kavussanu & Boardley, 2009; Kavussanu et al., 2013). Athletes may experience more empathy toward their teammates than toward their fellow students, which may explain why prosocial teammate behavior was higher in sport than university.

Finally, it is worth acknowledging that the university context was broader than the sport context. Specifically, in sport, participants were asked to indicate behavior frequency while playing for their team this season, whereas at university, they were asked to think about their experiences with other students this academic year. Some of these experiences included the classroom (e.g., intentionally distracted a student during a class), but others were more likely to occur outside the classroom (e.g., helped a student who was hurt, physically intimidated a student). This change in specificity from sport to university was the result of our efforts to ensure that the adapted PABSS items were relevant and meaningful to the university context. Previous research examining behavioral consistency has also used situations that varied in specificity; for example, behavior in a specific situation created in the laboratory has been examined in relation to behavior in real life (Funder & Colvin, 1991). Future research could examine whether variation in context specificity affects prosocial and antisocial behaviors.

Conclusion

In conclusion, our findings support the work of Bredemeier and Shields (Bredemeier, 1995; Bredemeier & Shields, 1984, 1986b) on bracketed morality and provide the first empirical evidence that individuals engage in more antisocial and less prosocial behavior toward their opponents while playing their sport than they do in their interactions with other students at university. The higher ego orientation and moral disengagement in sport may in part be responsible for these differences. Importantly, our research was the first to consistently show that prosocial behavior is higher toward one’s teammates in sport than toward other students at university. These findings suggest that team sport could provide the ideal conditions for prosocial behavior toward teammates to occur.

Notes

1. In line with previous research (e.g., Funder & Colvin, 1991), the term consistency, rather than stability, is used in this article because behavior was examined in different contexts, rather than over time. Schutz (1998) refers to this type of consistency as differential stability.

2. We measured behavior at university using the adapted PABSS because it was important to refer to the same behaviors in the two contexts to ensure differences can be attributed to the context rather than the measure.

Acknowledgments

The authors would like to thank Jonathan Readshaw and Lindsey Bee for their help with Study 2 data collection.

References

*Manuscript submitted: May 16, 2012
Revision accepted: May 19, 2013*