How Older Adults Are Perceived Is Influenced by Their Reported Exercise Status

Iain A. Greenlees, Ben Hall, Andrew Manley, and Richard C. Thelwell

Nelson (2002) proposed that ageism occurs as a result of the negative perceptions individuals have of older adults. This study examined whether information about an older person’s exercise habits would influence such perceptions. Participants (N = 1,230) from 3 age categories (16–25, 26–55, and 56+ yr) read a description of a 65-year-old man or woman describing 1 of 7 exercise statuses. Participants rated their perceptions of 13 aspects of the target’s personality. A 3-way (Target Exercise Status × Target Gender × Participant Age) MANOVA revealed significant main effects for target exercise status. Nonexercisers were perceived less positively than the control target and the exercising targets. The results suggest that there are self-presentational costs associated with being a nonexerciser at an older age, but few self-presentation benefits accrued to older adults who engage in regular exercise.

Keywords: stereotypes, ageism, exercise habits

Ageism has been described as “one of the most condoned, institutionalized forms of prejudice in the world” (Nelson, 2002, p. ix). Research has indicated that older people may be disadvantaged in social interactions in a number of ways; they are spoken to with simplified language and with a patronizing manner (e.g., Hummert & Ryan, 1996; Ryan, Hummert, & Bioch, 1995), are deemed less suitable for employment than younger adults (Bendick, Brown, & Wall, 1999), and may be less likely to be given medical treatment for certain conditions (Pasupathi & Lockenhoff, 2002). Researchers have shown that the basis for such discrimination is that older adults are stereotyped as being withdrawn, incompetent, feeble, generally forgetful, unattractive, miserly, bitter, and sickly, which leads to them being treated as lacking worth and competence (Hogg & Vaughan, 2002).

Although negative stereotypes may exert a strong influence on the lives of older adults, researchers have suggested that society’s attitude toward them is complex.
and multidimensional (Kite, Stockdale, Whitley, & Johnson, 2005). Richards and Hewstone (2001) propose that observers often assign individuals belonging to a larger, superordinate group into subgroups and hold different perceptions about members of these groups; this seems to apply to the stereotyping of older adults. Researchers (e.g., Brewer, Dull, & Lui, 1981; Hummert, 1990; Hummert, Gartska, Shaner, & Strahm, 1994) have found evidence for both positive and negative stereotypes of older adults. Specifically, Hummert et al.’s work revealed four negative stereotypes (severely impaired, despondent, shrew/crumudgeon, and recluse) in which the old are viewed as lacking in warmth or competence and three positive stereotypes (golden-ager, perfect grandparent, and John Wayne conservative) in which the old are perceived as warm or competent. For instance, the golden-ager was viewed as being both warm and competent (active, capable, sociable, independent, happy, and interesting).

Hummert (1999) has argued that the basis for assigning older individuals into a relevant subcategory are cues that become available (through conversation or action) during the course of a social interaction. Researchers have shown that referring to age-related issues in conversation (e.g., Coupland, Coupland, & Giles, 1989), drifting off the initial topic of a conversation (e.g., Gold, Arbuckle, & Andres, 1994), and personal self-disclosures related to bereavement, illness, immobility, and personal problems (Coupland, Henwood, Coupland, & Giles, 1990) may all serve as additional cues that help the observer subgroup the older person. This has important implications because the degree to which a person is perceived to exhibit positive characteristics is proposed to influence how perceivers respond to them and the types of discrimination that they face (Cuddy, Fiske, & Glick, 2008). However, little research has examined the information that will promote positive stereotyping in older adults.

One factor that may promote positive perceptions of older adults is physical activity. Recently, Greenlees, Webb, Hall, and Manley (2007) examined the effect of reported exercise status on the impressions formed of an older adult described in a paragraph. They found that older adults who were described as participating in regular exercise (tennis, circuit training, and salsa dancing) on a weekly basis were perceived as warmer and more competent than either the control target (no exercise information) or those who were specifically described as not participating in any physical activity. In addition, exercisers were also perceived to be healthier, stronger, fitter, better looking, and more muscular than control or nonexercising targets. These findings were consistent across three age groups (16–25, 25–55, and over 55 years). This research provides support for the contention that an older adult’s exercise status can influence the way he or she is perceived by others.

Despite the nature of the findings, a degree of caution should be exercised when interpreting Greenlees et al.’s (2007) results and the role of exercise status in how older adults are perceived. Specifically, the exercise activities that were included in the descriptions all reflected group-based activities. It is therefore possible that the results were confounded by the level of social contact that was implied by the activities. In addition, the variety of activities that were included also may have implied a wide range of different activities that were being engaged in by the target individuals. This has a number of important implications; it may mean that a structured exercise regimen over and above an active social life is not necessary (although other health benefits of exercise would be an added benefit) to promote...
positive perceptions of older adults. Greenlees et al. recognized this limitation in their findings and encouraged researchers to examine the impact of exercise status using a range of physical activities and comparative social activities. Thus, the first aim of the current study was to address this and examine the impact of a range of exercise types that vary in the extent to which they reflect vigorous physical activity (e.g., participation in regular sporting and physical activity). In particular, we were interested in examining the extent to which social activity (rather than physical activity) would influence how older adults are perceived. We hypothesized that, as social-activity information may also influence how older adults are perceived, targets portrayed as being socially active would be perceived as positively as those portrayed as being physically active. We also included an extreme-exerciser target (regularly running marathons and participating in long-distance cycle rides). We hypothesized that this target would be perceived more positively than others.

In addition, we sought to examine the extent to which perceptions of older adults are moderated by the age of the perceiver. The age of the perceiver was included because it has been proposed that the nature of the stereotypes we hold of older adults changes across the life span. Hummert (1999) proposed that it is only by middle and older age that individuals have developed a full and multifaceted range of substereotypes of older adults and that younger adults have fewer and more negative subgroupings of older age groups. This was borne out in Hummert’s research that found that the golden-ager subcategory was only produced by middle-aged and older adults. Based on this, it can be proposed that middle-aged and older adults will be influenced by exercise and activity information but younger adults will not. In their research, Greenlees et al. (2007) found no such Participant Age × Exercise Status interaction effect. However, their analysis was underpowered, so the current study sought to provide a further test of this proposal with a greater sample size. We therefore hypothesized, in line with Hummert’s theorizing, that a Participant Age × Exercise Status interaction effect would emerge.

We also included gender of the target as an independent variable in the current study. Kite et al. (2005) argued that women are perceived to enter old age (and maturity and the prime of life) at an earlier age than men, so when men and women of similar chronological ages are perceived, women tend to be perceived more negatively than men. However, in their meta-analysis, Kite et al. found no clear support for the proposal that older women are perceived more negatively than older men. They argued that researchers should include gender in future research to provide a fuller examination of its impact. Thus, gender was included as an independent variable, and we hypothesized that female targets would be more negatively rated than male targets.

Method

Participants

Participants (586 men and 644 women) from three age categories (16–25, 26–55, and 56+ years) were randomly approached and selected in a range of city-center venues (82.3% from shopping precincts and 17.7% from leisure facilities). The age groupings were based on those used in previous research examining stereotyping of older adults (e.g., Hummert et al., 1994). The mean ages for the age categories
were 19.70 (SD 2.25), 38.91 (SD 8.7), and 66.7 (SD 9.2) years, respectively. All participants provided informed consent. Most (98.8%) reported themselves as being British citizens and of White/European ethnicity.

Materials

Participants were asked to read one of 14 possible descriptions of a target. Each description informed the reader of the target’s exercise status (social exerciser, solitary exerciser, extreme exerciser, sociable nonexerciser, active-living nonexerciser, nonexerciser, or control) and whether the target was male (Tom) or female (Mary). The descriptions used were based on those used by Greenlees et al. (2007). All participants were presented with the following information:

[Tom/Mary] is a 65-year-old retired lecturer from a London university. [He/She] taught Chemistry and Human Biology for 30 years. [Tom/Mary] is of average height and average weight. [He/She] has brown eyes and short dark hair. In [his/her] spare time [he/she] listens to music, reads, and watches TV and often meets friends in the local community. [He/She] is married and together they have two grownup children, one of whom [Tom/Mary] is going to visit in America next summer.

This information constituted the control condition for exercise status. Further exercise-status conditions included information (inserted after the third sentence) about the level of activity in which the target participated on a regular basis (see Table 1 for specific information).

Measures

Once participants had read the description they were asked to create an image of Tom or Mary and use this image to rate him or her on personality traits and physical appearance. Participants had to rate the target on 13 personality traits (afraid/brave, lacks self-confidence/has self-confidence, has self-control/lacks self-control, dependent/independent, lazy/works hard, sloppy/neat, unintelligent/intelligent, good memory/forgetful, sociable/unsociable, few friends/many friends, friendly/not friendly, mean/kind, and sad/happy). All the items were scored on a 9-point semantic differential scale (1 = afraid to 9 = brave). The dimensions used were identical to those used by Greenlees et al. (2007).

Procedure

Participants were randomly recruited from either a busy shopping precinct or local leisure facilities. They were asked to read the description and complete the questionnaire at that location. Once participants had completed the experiment, they were thanked and debriefed as to the nature of the study.

Data Analysis

Pearson product–moment correlations were conducted on the dependent variables to assess the data for multicollinearity. In accord with the guidelines of Stevens (1996), any correlations in excess of .80 were deemed to indicate that the dependent
Table 1 Exercise-Status Information Given in Descriptor Paragraphs and Demographic Information of Groups

<table>
<thead>
<tr>
<th>Condition</th>
<th>Additional information</th>
<th>n</th>
<th>Men/Women</th>
<th>Mean age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonexerciser</td>
<td>[Tom/Mary] is physically inactive and does not participate in any activities such as playing tennis, jogging, or salsa dancing.</td>
<td>178</td>
<td>82/96</td>
<td>38.52</td>
</tr>
<tr>
<td>Sociable nonexerciser</td>
<td>Twice every week [Tom/Mary] plays bridge with a group of friends. [He/She] also attends a weekly photography class.</td>
<td>183</td>
<td>62/121</td>
<td>40.17</td>
</tr>
<tr>
<td>Active living</td>
<td>[Tom/Mary’s] weekly physical activity consists of gardening, regularly walking rather than driving, and doing housework.</td>
<td>165</td>
<td>69/96</td>
<td>38.09</td>
</tr>
<tr>
<td>Solitary exerciser</td>
<td>[Tom/Mary’s] exercise routine consists of using [his/her] exercise bike and doing aerobics at home and swimming on a weekly basis.</td>
<td>187</td>
<td>81/106</td>
<td>41.82</td>
</tr>
<tr>
<td>Social exerciser</td>
<td>[Tom/Mary’s] exercise routine consists of playing tennis, circuit training, and salsa dancing on a weekly basis</td>
<td>155</td>
<td>72/83</td>
<td>40.15</td>
</tr>
<tr>
<td>Extreme exerciser</td>
<td>[Tom/Mary] is an avid exerciser who regularly runs marathons and participates in long-distance cycle rides.</td>
<td>163</td>
<td>96/67</td>
<td>40.51</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>199</td>
<td>124/75</td>
<td>37.18</td>
</tr>
</tbody>
</table>

variables were, in essence, measuring the same construct. In these instances one of the correlated dependent variables would be removed from subsequent analyses. After this, a 2 (target gender) × 3 (respondent age) × 7 (target exercise status) multivariate analysis of variance (MANOVA) was conducted with the 13 personality characteristics used as dependent variables. Participant gender was not included as an independent variable in this study because researchers have found that it does not influence either the perception of older adults (Kite et al., 2005; Kite & Wagner, 2002) or the perception of exercisers and nonexercisers (Martin Ginis, Latimer, & Jung, 2003). Where significant multivariate effects were revealed, we conducted follow-up univariate analyses of variance (ANOVAs), using Bonferroni-corrected alpha levels (.05/13 = .003). Partial eta-squared (η^2) effect sizes were also computed. In line with the recommendations of Clark-Carter (1997), effect sizes of .001−.058 were classified as small, effect sizes of .059−.137 classified as medium, and effect sizes over .138 were classified as large.
Results

Pearson product–moment correlations indicated significant correlations between the variables. No relationship exceeded Stevens’s (1996) criterion value of .80, so all items were retained for further analysis. Box’s M tests indicated significant differences in the covariance matrices of the dependent variables \((p < .05)\). Thus, Pillai’s trace was used as the criterion value in both analyses.

We found a significant main effect for target exercise status on ratings of personality, Pillai’s trace \((78, 7086) = 0.2, F = 3.40, p < .001\), effect size \(\eta^2 = .04\), power = 1.0. Follow-up ANOVAs (see Table 2 for descriptive statistics) revealed that exercise status influenced perceptions of bravery, \(F(6, 1188) = 18.66, p < .001\), effect size \(\eta^2 = .086\); confidence, \(F(6, 1188) = 14.73, p < .001\), effect size \(\eta^2 = .079\); self-control, \(F(6, 1188) = 5.44, p < .001\), effect size \(\eta^2 = .027\); number of friends, \(F(6, 1188) = 8.43, p < .001\), effect size \(\eta^2 = .041\); friendliness, \(F(6, 1188) = 5.60, p < .001\), effect size \(\eta^2 = .028\); happiness, \(F(6, 1188) = 7.63, p < .001\), effect size \(\eta^2 = .037\); laziness, \(F(6, 1188) = 15.48, p < .001\), effect size \(\eta^2 = .074\); sociability, \(F(6, 1188) = 10.68, p < .001\), effect size \(\eta^2 = .051\); kindess, \(F(6, 1188) = 2.99, p < .001\), effect size \(\eta^2 = .015\); and independence, \(F(6, 1188) = 3.40, p = .002\), effect size \(\eta^2 = .017\). The post hoc tests revealed broad support for the notion of a nonexerciser stereotype in that the nonexerciser tended to be perceived less favorably than the control target and the three exercising targets (solitary exerciser, social exerciser, and excessive exerciser). This pattern emerged for confidence, self-control, number of friends, friendliness, laziness, happiness, and sociability. However, in no instances was either the social nonexerciser or the active-living target perceived less positively than the control condition, and few differences were seen between the active-living or sociable nonexerciser targets and the exercising targets. The sociable nonexerciser was seen as less brave and less confident than the three exercising targets, the active-living target was seen as having fewer friends than the sociable exercise target, the sociable nonexerciser was seen as more lazy than the excessive exerciser, the social nonexerciser was seen as less happy than the excessive or sociable exerciser, and the sociable nonexerciser was seen as less sociable than the sociable exerciser.

In terms of an observed exerciser stereotype, exercise targets were only perceived more positively than the control for bravery. However, the excessive exerciser was also perceived to be harder working and more confident than the control target \((p < .001)\). Finally, for all 13 characteristics, there were no significant differences between the three exercising targets.

Our analysis also revealed that a number of these effects were moderated by the age of the participant; the MANOVA revealed a significant Age × Exercise Status interaction effect, Pillai’s trace \((156, 14244) = 0.17, F = 1.29, p = .01\), effect size \(\eta^2 = .01\), power = 1.0. Follow-up ANOVAs indicated interaction effects for only the neatness, \(F(12, 1188) = 1.91, p = .03\), effect size \(\eta^2 = .019\), and forgetfulness, \(F(12, 1188) = 2.00, p = .02\), effect size \(\eta^2 = .02\), ratings, but these were not significant using the Bonferroni-adjusted alpha level. A significant main effect for participant age was also observed, Pillai’s trace \((26, 2354) = .08, F = 3.84, p < .001\), effect size \(\eta^2 = .04\), power = 1.0. Follow-up ANOVAs revealed that age influenced perceptions of bravery, \(F(2, 1188) = 18.29, p < .001\), effect size \(\eta^2 = .03\), and perceived number of friends, \(F(2, 1188) = 5.729, p = .003\), effect size \(\eta^2 = .01\).
Table 2 Descriptive Statistics for the Personality Ratings as a Function of Target Exercise Status, M (SD)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Control</th>
<th>Nonexerciser</th>
<th>Sociable nonexerciser</th>
<th>Active-living nonexerciser</th>
<th>Solitary exerciser</th>
<th>Sociable exerciser</th>
<th>Extreme exerciser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afraid/Brave</td>
<td>6.29 (1.42)</td>
<td>5.70 (1.36)</td>
<td>6.19 (1.29)</td>
<td>6.46 (1.21)</td>
<td>6.66 (1.32)</td>
<td>6.87 (1.36)</td>
<td>7.11 (1.37)</td>
</tr>
<tr>
<td>Lacks confidence/ Confident</td>
<td>7.02 (1.35)</td>
<td>6.31 (1.58)</td>
<td>6.79 (1.53)</td>
<td>6.88 (1.32)</td>
<td>7.26 (1.24)</td>
<td>7.36 (1.29)</td>
<td>7.63 (1.24)</td>
</tr>
<tr>
<td>Lacks self-control/Has self-control</td>
<td>7.02 (1.44)</td>
<td>6.46 (1.54)</td>
<td>6.91 (1.39)</td>
<td>6.98 (1.29)</td>
<td>7.16 (1.46)</td>
<td>7.01 (1.44)</td>
<td>7.44 (1.54)</td>
</tr>
<tr>
<td>Dependent on others/ Independent</td>
<td>6.94 (1.64)</td>
<td>6.63 (1.63)</td>
<td>6.65 (1.69)</td>
<td>6.93 (1.33)</td>
<td>7.14 (1.70)</td>
<td>6.97 (1.70)</td>
<td>7.32 (1.61)</td>
</tr>
<tr>
<td>Few friends/Many friends</td>
<td>6.87 (1.69)</td>
<td>6.15 (1.83)</td>
<td>6.75 (1.62)</td>
<td>6.67 (1.54)</td>
<td>6.99 (1.47)</td>
<td>7.27 (1.33)</td>
<td>7.26 (1.46)</td>
</tr>
<tr>
<td>Not friendly/Friendly</td>
<td>7.21 (1.38)</td>
<td>6.70 (1.60)</td>
<td>7.05 (1.38)</td>
<td>7.07 (1.21)</td>
<td>7.27 (1.20)</td>
<td>7.37 (1.30)</td>
<td>7.48 (1.35)</td>
</tr>
<tr>
<td>Lazy/Works hard</td>
<td>6.89 (1.65)</td>
<td>5.97 (1.74)</td>
<td>6.83 (1.57)</td>
<td>7.05 (1.22)</td>
<td>7.15 (1.39)</td>
<td>7.26 (1.56)</td>
<td>7.55 (1.59)</td>
</tr>
<tr>
<td>Mean/Kind</td>
<td>6.80 (1.26)</td>
<td>6.54 (1.36)</td>
<td>6.64 (1.39)</td>
<td>6.86 (1.17)</td>
<td>6.87 (1.27)</td>
<td>6.90 (1.26)</td>
<td>7.14 (1.41)</td>
</tr>
<tr>
<td>Sad/Happy</td>
<td>6.80 (1.31)</td>
<td>6.54 (1.36)</td>
<td>6.64 (1.39)</td>
<td>6.92 (1.08)</td>
<td>6.87 (1.27)</td>
<td>7.03 (1.26)</td>
<td>7.28 (1.60)</td>
</tr>
<tr>
<td>Sloppy/Neat</td>
<td>6.80 (1.47)</td>
<td>6.42 (1.57)</td>
<td>6.80 (1.45)</td>
<td>6.90 (1.16)</td>
<td>6.94 (1.35)</td>
<td>6.76 (1.46)</td>
<td>6.92 (1.45)</td>
</tr>
<tr>
<td>Unintelligent/Intelligent</td>
<td>8.02 (1.06)</td>
<td>7.87 (1.23)</td>
<td>7.61 (1.41)</td>
<td>7.56 (1.24)</td>
<td>7.74 (1.38)</td>
<td>7.80 (1.22)</td>
<td>7.91 (1.18)</td>
</tr>
<tr>
<td>Unsociable/Sociable</td>
<td>7.29 (1.57)</td>
<td>6.44 (1.78)</td>
<td>7.17 (1.36)</td>
<td>7.18 (1.27)</td>
<td>7.35 (1.18)</td>
<td>7.67 (1.12)</td>
<td>7.44 (1.49)</td>
</tr>
<tr>
<td>Forgetful/Good memory</td>
<td>7.17 (1.46)</td>
<td>6.87 (1.35)</td>
<td>7.03 (1.50)</td>
<td>6.93 (1.18)</td>
<td>7.35 (1.18)</td>
<td>7.06 (1.42)</td>
<td>7.19 (1.45)</td>
</tr>
</tbody>
</table>

Note. All ratings were made on a 9-point scale.
Further post hoc tests showed that participants age 56 and older rated targets as braver than those 55 and under \((p < .001)\) and that those in the 16–25 age range rated the participants as having fewer friends than either the 26–55 age range \((p < .05)\) or the over-56 age range \((p < .01)\). The analysis also revealed that women were seen as braver, \(F(1, 1188) = 4.79, p = .029\), effect size \(\eta^2 = .004\), power = .59; kinder, \(F(1, 1188) = 4.47, p = .035\), effect size \(\eta^2 = .004\), power = .56; and neater, \(F(1, 1188) = 7.61, p = .006\), effect size \(\eta^2 = .006\), power = .79, than men. However, using the Bonferroni-corrected alpha levels these differences were not deemed to be significant.

Discussion

The aim of the current study was to examine the influence of reported exercise status and social-activity levels of older adults (age 65) on how they are perceived. We found that the exercise and social-activity status of older adults did influence the way in which they were perceived, with physically inactive individuals being rated as colder and less competent than exercising targets, targets with reported social contact, or control targets (no exercise-relevant information provided). The results of the current study support previous research examining the impact of exercise status on impression formation (e.g., Lindwall & Martin Ginis, 2006; Martin, Sinden, & Fleming, 2000; Martin Ginis et al., 2003; Martin Ginis & Leary, 2006) in indicating a “nonexerciser” stereotype in which the nonexerciser is perceived less positively than the control target and the exercising targets, whereby there are self-presentational costs associated with not participating in physical activity. However, we did not see consistent self-presentational benefits accrued by engaging in such activity (i.e., an exerciser stereotype in which the exercising target is more positively perceived than the control target). This finding therefore refutes the research of Greenlees et al. (2007) that found that when participants rated older adults there were self-presentation benefits associated with participation in regular, moderate physical activity, with exercising targets being rated more positively than control and nonexercising targets.

A number of possible explanations may account for the discrepancy between the findings of Greenlees et al. (2007) and the current findings. Martin Ginis and Leary (2006) argued that the nonexerciser stereotype will be more likely to be seen in populations that hold “healthism” beliefs. Crawford (1980) defined healthism as the belief (presumed to have originated from middle-class America) that engaging in health-promoting activities such as exercising is a moral obligation, and anyone who does not engage in these activities lacks virtue or moral fiber. Greenlees et al. proposed that studies that have predominantly found evidence for the nonexerciser stereotype (e.g., Lindwall & Martin Ginis, 2006; Martin et al., 2000; Martin Ginis et al., 2003; Martin Ginis & Leary, 2006) have used populations liable to endorse healthist beliefs (Canadian, American, and Swedish sport science and psychology undergraduate students), whereas the study that found evidence for an exerciser stereotype (Greenlees et al.) used a community-based sample taken from a local shopping precinct. In the current study, data were also collected from leisure facilities in the community. Thus, it is possible that more physically active people, with greater healthism beliefs, were sampled in the current study than in the Greenlees et al.
study, which resulted in the current findings. However, we did not directly measure healthism, so such an explanation is in need of further research. The findings also showed that exercising did not confer significantly more positive perceptions over nonexercising but socially active individuals. This supports the caution expressed by Greenlees et al. (2007) in the interpretation of their results and indicates that it is possibly not physical activity per se that leads to more positive perceptions of older adults but more general levels of activity, “busyness,” and social contact. Thus, it appears that social-activity levels may also be a useful source of information that perceivers use when assigning an older adult into a more specific subcategory of older adulthood. This notion also agrees with research that has found that there is a belief that maintaining levels of busyness is important for maintaining a good level of functional ability in older age (Grant, 2008). Thus, although there are tangible health benefits to be gained from maintaining exercise programs into older age (or from adopting them), exercise status appears to have no specific benefits on how older adults are perceived compared with activity in other life domains.

Although the current study did not provide consistent support for an exerciser stereotype in an older population, our results did provide some evidence to support an extreme exerciser stereotype. We found that the extreme exerciser targets (regularly participating in long-distance bicycle rides and running marathons) were perceived more positively than all nonexercising targets (active living, sociable nonexerciser, nonexerciser) and the control target but only on the dimensions of bravery, confidence, and laziness. This is partially consistent with the hypothesis we proposed and indicates that information that sets the target apart from the typical older adult may reduce the negative perceptions of that individual. We also found that the perceptions of the extreme exerciser were not diminished as a result of the information concerning his or her exercise habits. However, because such levels of physical activity are neither possible (because of barriers such as finance and time) nor potentially advisable for all older adults, it appears the self-presentation benefits of this level of physical activity will remain possible for only a small percentage of older adults.

Despite the differences between the specific nature of our findings and the findings of previous research, there are important potential implications of the current results. Specifically, Cuddy et al. (2008) propose that perceptions of warmth and competence influence the behavior of perceivers toward the target. They argue that the degree to which an individual or group is perceived to be likeable and warm predicts the active behaviors of others, with individuals perceived to be cold receiving “active harm” (open hostility and aggression) and individuals perceived to be warm being the recipients of active facilitation (helping behaviors). Thus, nonexercising older adults can be proposed to be less likely to receive assistance from those they interact with. In addition, Cuddy et al. propose that levels of perceived competence influence passive behaviors, with those perceived to be competent being associated and collaborated with by perceivers and those perceived to be incompetent being the victims of passive harm (i.e., neglect, being ignored). Thus, nonexercising targets who are perceived less positively (less competent) than other targets may be in more danger of experiencing neglect and being ignored. Clearly, there is a danger that not participating in exercise or social activities may change the degree of discrimination faced by older adults. However, future researchers need to examine the impact of perceptions of older adults on the way people behave toward them.
For the second aim of our study we hypothesized that the self-presentational benefits of exercise for older adults would only occur when the perceivers were either middle-aged or older adults. In line with the proposals of Hummert (1999) we proposed that younger adults, who have been shown to hold fewer and simpler positive stereotypes of the old, would not be influenced by reported exercise status. Although previous research has found no support for this contention, it was proposed that this is because such research has been insufficiently powered to detect such an interaction effect (Greenlees et al., 2007). However, although the current study employed a larger sample size, we found no consistent support for the proposal that reported exercise status of older adults has differential impacts across different age groups. We did, however, find significant main effects for age of participant. Perhaps it is not surprising that we found that older adults rated the targets as braver and having more friends than the other age groups. These findings are consistent with predictions from social identity theory (Tajfel & Turner, 1979), which proposes that in-group members will provide more favorable ratings of other in-group members than of out-group members.

The final aim of the current research was to examine differences in the way in which older men and women are perceived. Kite et al. (2005) proposed that women are perceived to enter old age earlier than men, so we hypothesized that 65-year-old female targets would be more negatively perceived than 65-year-old men. Contrary to this hypothesis, we found no gender differences in the ratings of the targets and even found a nonsignificant trend (when using the Bonferroni-corrected alpha level; it was significant if this correction was not applied) for women to be perceived more positively than men on the dimensions of bravery, kindness, and neatness. Thus, it appears that, in the United Kingdom at least, older women are not perceived more negatively than older men and are possibly even perceived more positively on some dimensions. These differences are clearly worthy of further research to consider the extent and generalizability of such findings.

Taken as a whole, the findings of the current study indicate that older adults who fail to participate in regular physical or social activities (or at least report that they do) are perceived more negatively on a number of personality factors than exercising or socially active or control (no exercise or social activity information) targets. This could have important consequences for how perceivers respond to and act toward older adults (Cuddy et al., 2008). However, although future researchers need to examine the behavioral consequences (on perceivers) of such impression formation, this research provides preliminary evidence to suggest that exercise and social activity in old age may help reduce or reverse age prejudice in a society in which age prejudice is often seen as inherent (Nelson, 2002).

References

