Welcome to the webinar!

Regulation of mTOR by Growth Factors, Nutrition and Exercise
Impact on Muscle Protein Synthesis

• If you’re having problems with the audio, you may call in by clicking on the “use telephone” option in the audio tab and dialing in with the number and audio pin provided.

• Your microphones are muted. Feel free to ask me questions using the question/chat box in the lower right-hand corner of your screen.

• Please submit questions for our presenter throughout the presentation using the questions tab. Questions will be addressed during a Q&A session at the end.

• The webinar will be recorded -- a link to the recording will be e-mailed to you by the end of the week. The recorded webinar will be available at www.HumanKinetics.com/Webinars.

• This webinar is presented in collaboration with the Collegiate and Professional Sports Dietitians Association (CPSDA). It is not currently approved for CEUs/CECs.

• For additional questions, view the webinar FAQs found at www.HumanKinetics.com/Webinars.
Regulation of mTOR by Growth Factors, Nutrition and Exercise

Impact on Muscle Protein Synthesis

John L. Ivy, PhD

University of Texas at Austin
mTOR

• mTOR: Mammalian Target of Rapamycin
• mTOR protein is a serine-threonine kinase that belongs to the phosphoinositide 3-kinase family of proteins
• mTOR is found in two distinct protein complexes
 mTOC1 (rapamycin sensitive) – cell growth
 mTOC2 (rapamycin insensitive) – cytoskeletal organization
mTOC1 Protein Complex

- mTOR: mammalian target of rapamycin
- Raptor: regulatory-associated protein of mTOR
- mLST8: mammalian lethal with Sec 13 protein
- PRAS40: proline-rich Akt substrate 40 kD
- Deptor: DEP domain-containing mTOR-interacting protein
- FKBP12: FK506 binding protein of 12 kD (R: rapamycin)
Protein Synthesis

• The process by which individual amino acids are connected by peptide bonds in a specific order dictated by the nucleotide sequence in DNA, which involves the processes of transcription and translation

 Transcription - is the first step of gene expression, in which a particular segment of DNA is copied into RNA by the enzyme RNA polymerase

 Translation - mRNA is decoded by a ribosome to produce a specific amino acid chain or polypeptide
1. Transcription

2. Translation

3. Degradation

Muscle Contraction

Insulin

Post Exercise Nutrition

Transcription Element

Response Element

Promoter

DNA

RNA Polymerase

RA Poly

mRNA

New Peptide

Amino Acids

Hormone

Hormone Receptor

Transcription

Insulin

Nutrition
Steps in Translation

1. **Initiation**: The ribosome *assembles* around the target mRNA. The first tRNA is attached at the start codon. *(initiation thought to be rate-limiting step for protein synthesis)*

2. **Elongation**: The tRNA transfers an amino acid to the tRNA corresponding to the next codon. The ribosome then moves to the next mRNA codon to continue the process, creating an amino acid chain.

3. **Termination**: When a stop codon is reached, the ribosome releases the polypeptide.
mTOR Activity Required for Increase in Muscle Mass

- mTOR activity is increased following resistance exercise
- Rapamycin inhibits mTOR activity
- Rapamycin administration during a resistance training program blocks protein synthesis and muscle hypertrophy
- Rapamycin also blocks protein/amino acid activated protein synthesis
- Rapamycin does not affect basal protein synthesis
mTOR Activation by Growth Factors

- Insulin/IGF-1 activates Akt, which leads to the phosphorylation of PRAS40, activating Raptor.
- Akt inactivates TSC, allowing Ras homolog enriched in brain (Rheb) to activate the catalytic subunit of mTOR.
- Phosphorylation of PRAS40 sequesters Raptor, substrate for mTOR catalytic subunit.
- Tuberous Sclerosis Complex (TSC) is a GTPase activator protein (GAP) that inactivates TSC when activated by Ras.
- Rheb-GTP activates the catalytic subunit of mTOR, leading to phosphorylation of p70S6K.

Key components:
- PI3K (phosphatidylinositol 3-kinase)
- PtdIns(4,5)P₂
- PtdIns(3,4,5)P₃
- Akt
- TSC1, TSC2
- Rheb
- Raptor
- mLST8
- Deptor
- p70S6K
- ATP, ADP
Activation of mTOR by Amino Acids

Ragulator:
- Guanine nucleotide exchange factor (GEF), when activated will convert GDP to GTP

Gator:
- GAP activity towards Rags, will activate GTPase and convert GTP to GDP

Rag:
- Ras related GTP binding, when GTP-bound it will recruit mTOR to lysosomal membrane where it will bind and be activated by Rheb

Insulin activates mTOR by a separate mechanism than AA and therefore their effects on mTOR and protein synthesis are additive

Remove L-Leucine from lysosome stops activation of mTOR
mTOR Activation by Muscle Contraction

- mTOR
- Raptor
- mLST8
- PRAS40
- p70s6k
- CD
- Rheb
- GTP
- TSC1
- TSC2
- Phosphatidylinositol 3-kinase (PI3K)
- Akt
- PtdIns(3,4,5)P³
- PtdIns(4,5)P²
- Insulin
- ERK1/2
- Phospholipase D
- Phosphatidic Acid + Choline
- ATP
- ADP
- p70s6k
- Rheb
- GDP
- CD
- p70s6k
- Deptor
- Phosphatidylycholine
- IGF-1
Specific Inhibitors of mTOR Activation

Growth Factor Receptor

INS

PI3K

Wortmannin

PLD

1-Butanol

PA

Akt

mTOR

Rapamycin

p70S6K
EDL Muscle Undergoing Eccentric Contractions *In Vitro*

mTOR Activation by Muscle Contraction

- Blocking mTOR activity with rapamycin blocks contraction-induced muscle protein synthesis (mTOR activation required)
- Blocking activation of PI-3 kinase/Akt with wortmannin does not prevent activation of mTOR with muscle contraction (IGF-1 activation not necessary)
- Inhibition of TSC is not required for contraction induced muscle protein synthesis (ERK 1/2 activation is not necessary)
- Blocking phospholipase D activity does inhibit contraction-induced activation of protein synthesis (activation of phospholipase D necessary)
mTOR Activation by Muscle Contraction

- **Insulin**
 - IRS
 - PI3K
 - PtdIns(4,5)P$_2$
 - PtdIns(3,4,5)P$_3$

- **Akt**

- **ERK 1/2**

- **Phospholipase D**
 - Phosphatidylcholine
 - Phosphatic Acid + Choline

- **TSC1**
 - TSC2
 - Rheb
- GDP → GTP
- Rheb

- **mTOR**
 - CD
 - Deptor
 - Raptor
 - mLST8
 - PRAS40

- **p70S6K**

- **ATP** → ADP

- **IGF-1**
 - Movement

- **GTP**

- **GDP**

- **p70S6K**

- **mTOR**

- **CD**

- **Deptor**

- **Raptor**

- **mLST8**

- **PRAS40**
mTOR Activation During Exercise

Insulin → PtdIns(4,5)P_2 → PtdIns(3,4,5)P_3 → PI3K → Akt

AMPK: AMP activated protein kinase
LKB1: Serine/threonine kinase 11
REDD1: Regulated in DNA damage and development

Blocking protein synthesis during exercise conserves cellular energy to support muscle contraction and work
Does Feeding During Exercise Prevent Suppression of mTOR Activity?

Rats were administered saline, glucose (135 mg/100g BW), or BCAA (135 mg/100g BW) by oral gavage 30 min before exercise.

Murakami T et al. BBRC 405: 615-619, 2011
Phosphorylation of 4E-BP1 and Expression of REDD1

Murakami T et al. BBRC 405: 615-619, 2011
Effect of Exercise on Muscle Protein Synthesis
Muscle Protein Synthesis and Breakdown Before and After Resistance Exercise

Means with different letters are significantly different ($p \leq 0.05$)

Differences between protein synthesis and breakdown equals net protein balance

Protein or Amino Acid Supplementation Following Resistance Exercise

L-Leucine
Experimental Design

• Intravenous infusion of a balanced amino acid mixture at rest and after a leg resistance exercise protocol
• Exercise was knee extensions
• Infusion started

Protein Synthesis

% Change from Basal

AA (Rest) AA (Post-exercise)

Protein Synthesis and Degradation with Increasing Protein with Meal

Rate of Protein Synthesis

Protein Consumption (g)

Synthesis
Type of Protein for Post Exercise Supplement is Important

Effect of Exercise plus CHO on Muscle Protein Synthesis

D-glucose
Muscle Protein Synthesis Following Exercise and Protein/CHO

- 10 subjects performed both upper and lower body resistance exercise lasting ~ 1 hour
- Subjects received a beverage volume of 2.5 ml/kg every 30 min to ensure a given dose of 0.3 g/kg of a casein protein hydrolysate per hour combined with either:
 - 0 g/kg•h⁻¹ carbohydrate (PRO treatment),
 - 0.15 g/kg•h⁻¹ carbohydrate (PRO LCHO treatment),
 - or 0.6 g/kg•h⁻¹ carbohydrate (PRO HCHO treatment).

Studies Support the Use of CHO in a PRO Supplement Post Exercise
Carbohydrate and Amino Acid Supplementation

32 subjects trained for 12 weeks while consuming several different nutritional interventions

Supplements consumed during exercise and post exercise:
- Placebo
- 6% CHO solution
- 6 g EAA
- CHO + EAA
Carbohydrate and Amino Acid Supplementation

Fig. 2 Body composition changes following 12 weeks of resistance training. Significant difference ($P < 0.05$) from baseline value. *, Treatment group pre- to post-training change is significantly different ($P < 0.05$) from PLA (filled circle).

Carbohydrate and Amino Acid Supplementation

Fig. 3. Muscle fibre CSA of type I, Ila, and Iib before (solid bars) and after (open bars) 12 weeks of resistance training. *Post-training muscle fibre CSA is significantly different ($P < 0.05$) from pre-training. Treatment group change in muscle fibre CSA is significantly different ($P < 0.05$) from PLA (filled circle), CHO (up filled triangle), and EAA (down filled triangle).

Effects of exercise and insulin infusion on protein synthesis and degradation

<table>
<thead>
<tr>
<th></th>
<th>Protein Synthesis</th>
<th>Protein Degradation</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Insulin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest</td>
<td>30±7</td>
<td>46±8</td>
<td>-16</td>
</tr>
<tr>
<td>Post Exercise</td>
<td>65±10</td>
<td>74±10</td>
<td>-9</td>
</tr>
<tr>
<td>With Insulin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest</td>
<td>51±4</td>
<td>48±3</td>
<td>3</td>
</tr>
<tr>
<td>Post Exercise</td>
<td>64±9</td>
<td>52±9</td>
<td>12</td>
</tr>
</tbody>
</table>

Units are nmol•min⁻¹•100 ml leg volume.

Carbohydrate and Amino Acid Supplementation

3-methyl-histidine release

Protein Synthesis and Degradation with Increasing Protein with Meal

Rate of Protein Synthesis and Degradation

Plasma Insulin (µU/ml)

Synthesis
Degradation
Accretion
Effect of Phospatidic Acid Supplementation on Resistance Exercise Training Adaptations

• 28 subjects were randomly assigned to one of two treatment groups (14 subjects per group):
 - Placebo
 - Phosphatidic Acid (750 mg/d) from soy

• Subjects completed an 8 week periodized whole-body resistance training program

• Tested for changes in body composition by DEXA, muscle hypertrophy (CSA of the rectus femoris) and muscle strength (1 RM for bench press and leg press)

Changes in CSA Rectus Femoris and Lean Body Mass

Summary

• mTOR is a serine-threonine kinase with two configurations (mTOC1 and mTOC2). mTOC1 is sensitive to rapamycin and responsible for cell growth and training adaptation
• mTOR is responsible for activation of translation initiation and therefore control of protein synthesis
• Growth factors, nutrition and muscle contraction can regulate mTOR activity
• Growth factors activate mTOR via the IRS-1/PI-3 kinase/Akt pathway
• Nutrition (primarily L-leucine) activates mTOR by activating Rag A/B, which recruits the mTOC1 complex to a lysosomal membrane where it can interact with Rheb
• Muscle contraction activates mTOR by generating phosphatidic acid, which binds to the mTOR protein
Summary completed

• During exercise, mTOR is inactivated by activation of AMP Kinase and increased expression of REDD1
• Post exercise net protein balance is remains negative until nutrient intervention
• Providing protein and/or L-leucine will act additively with muscle contraction to increase muscle protein synthesis and produce a positive net protein balance
• The addition of CHO to a post workout protein supplement does not enhance muscle protein synthesis. However, it will reduce the rate of protein breakdown and increase net protein accretion
• Taking a phosphatidic acid supplement (750 mg) daily may increase the rate of muscle and strength development during a resistance exercise training program
Sports Nutrition Workshops
Nutrition for Sports, Exercise & Weight Management
Nutrition Sports Exercise CEUs
With Nancy Clark MS RD and John Ivy PhD

Topics include:
Principles of exercise training
How to create sports-related food plans
The importance of meal and supplement timing
The latest in ergogenic aids
Combining nutrition and exercise to stay young
How to get your business going in the right direction

For information on the workshops: www.nutritionsportsexerciseceus.com

Dates and locations:
Seattle, WA Nov 14-15, 2014
Portland, OR Dec 5-6, 2014
Phoenix, AZ Jan 23-24, 2015
San Francisco, CA Feb 6-7, 2015
Las Angeles – Long Beach, CA Feb 27-28, 2015
Los Angeles – Northridge, CA Feb 28-Mar 1, 2015
Thank you for attending!

• Students of dietetics and aspiring sports dietitians can register for the 2015 CPSDA Boot Camp Workshop on February 7th on campus of Texas A&M University. Learn about the unique role and the skill set needed to become a sports dietitian. Register today! http://www.sportsrd.org/Boot_Camp_2015.html

• Join CPSDA! Advocate for full-time positions within collegiate and professional sports and the military setting: www.sportsrd.org/Join_CPSDA.html
